Advances in subgroup discovery for biomedical research thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Advances in subgroup discovery for biomedical research

Published on Sep 25, 20131902 Views

Related categories

Chapter list

Advances in Subgroup Discoveryfor Biomedical Research00:00
Talk outline00:15
Data Mining in a Nutshell00:20
Example: Learning a classification modelfrom contact lens data00:57
First Generation Data Mining01:32
Second Generation Data Mining01:48
Task reformulation: Binary Class Values02:23
Other tasks: Learning from Numeric Class Data02:33
Subgroup Discovery02:45
Subgroup discovery example:03:28
Induced subgroups and their statistical characterization04:47
Subgroup Discovery in DNA microarray data analysis06:15
Gene Expression Data: data mining format07:34
Standard Approach: Learning High-Dimensional Classifiers08:26
Subgroup discovery in DNA microarray data analysis - 108:57
Subgroup discovery in DNA microarray data analysis - 209:27
SD algorithms in the Orange DM Platform09:59
Freely Available Data Mining Platforms10:30
Towards a Third Generation Data Mining Platform10:55
Relational Data Mining in a nutshell11:40
Relational data mining - 112:00
Relational data mining - 212:37
Relational Data Mining through Propositionalization15:40
Relational Data Mining in Orange4WS16:04
Relational data mining - 316:11
Using domain ontologies - 116:46
Using domain ontologies - 217:32
Semantic Data Miningin Orange4WS18:36
Semantic Data Mining18:54
Example: - 119:20
Example: - 219:34
First order featureconstruction19:38
Propositionalization19:54
Semantic Data Mining in two steps20:36
Semantic Data Mining for DNA Microarray Data Analysis21:04
Biomine graph exploration21:25
The SEGS + BioMine Methodology22:27
SEGS + BioMine workflow implementation23:28
SEGS+ BioMine outputs24:40
Summary of SEGS + BioMine25:05
Current work25:09
Summary and conclusion: Current work25:38
Biomedical use cases27:26
Towards Third Generation Data Mining27:41
Summary and conclusion: Future work - 127:57
Summary and conclusion: Future work - 228:38
Acknowledgements29:21