Biological and Bioinspired Nanostructured Materials: Basic Physics and Applications thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Biological and Bioinspired Nanostructured Materials: Basic Physics and Applications

Published on Nov 07, 20114463 Views

Elementary biological units such as proteins and peptides self-assemble into natural biological nanostructures such as protein fibers and amyloid fibrils (AF). Another class of nanomaterials is man-

Related categories

Chapter list

Biological and Bioinspired Nanostructured Materials: Basic Physics and Applications00:00
Living Nature: Protein Fibers05:38
Nature: Amyloid Fibrils08:19
Bioinspired Peptide Nanotubes (1)10:22
Bioinspired Peptide Nanotubes (2)14:54
Biological and Bioinspired Structures 15:16
Common Intrinsic Physical Properties?20:14
Biological and Bioinspired Structures: Motivation and Goals22:34
Part I25:47
Peptide Engineering and Self Assembly Mechanism25:54
Peptide Nanotubes Vapor Deposition (1)27:20
Peptide Nanotubes Vapor Deposition (2)28:21
Peptide Nanotubes Vapor Deposition (3)29:17
Peptide Nanostructures29:25
Part II30:05
Self Assembled Bio-Inspired Peptide Nanotubes30:20
Optical Absorption of Self Assembled Bio-Inspired Peptide Nanotubes31:37
Quantum Confinement Phenomena (1)33:41
Quantum Confinement Phenomena (2)35:02
Quantum Confinement Phenomena (3)37:01
Quantum Confinement Phenomena (4)37:31
Quantum Confinement in Self Assembled Bio-Inspired Peptide Nanotubes (1)37:32
Quantum Confinement in Self Assembled Bio-Inspired Peptide Nanotubes (2)39:05
Photoluminescence in Quantum Confined Bio-Inspired Nanostructures39:41
Cyclic Peptide Nanotubes-QW Engineering (1)41:16
Cyclic Peptide Nanotubes-QW Engineering (2)41:54
FF-peptide nanotubes (evaporation from solutions) - 142:20
FF-peptide nanotubes (evaporation from solutions) - 242:54
Peptide Nanotubes Self Assembly Mechanism (1)42:58
Peptide Nanotubes Self Assembly Mechanism (2)45:23
Self Assembly Insulin Amyloid Fibrils45:25
Part III46:35
Biological and Bioinspired Structures: Motivation and Goals46:50
Ferroelectricity in Biology (1)47:13
Ferroelectricity in Biology (2)47:57
Piezoelectric Effect in Human Bones at Nanoscale (1)48:03
Piezoelectric Effect in Human Bones at Nanoscale (2)48:08
Ferroelectric and Related Properties in Bioinspired Peptide Nanotubes (1)48:38
Ferroelectric and Related Properties in Bioinspired Peptide Nanotubes (2)49:40
Ferroelectric Properties of FF-Peptide Nanotubes49:42
Peptide Nanotubes Piezoelectricity: Phase Transition (1)50:02
Peptide Nanotubes Piezoelectricity: Phase Transition (2)51:13
Peptide Nanotubes Piezoelectricity: Phase Transition (3)51:31
Phase Transition in FF-Peptide Nanotubes51:34
Peptide Nanotubes Morphological Transition (1)52:10
Peptide Nanotubes Morphological Transition (2)52:21
Peptide Nanotubes Morphological Transition (3)52:36
Peptide Nanotubes Morphological Transition (4)53:21
Phase Transition: Wettability Properties (1)53:59
Phase Transition: Wettability Properties (2)54:25
Peptide Nanotubes Structural Transformation (1)54:29
Peptide Nanotubes Structural Transformation (2)55:16
Phase Transition: Molecular Transformation (1)55:26
Phase Transition: Molecular Transformation (2)56:13
Phase Transition In Bioinspired FF-Peptide Nanostructures56:18
Applications of Bioinspired Materials (1)56:25
Bioinspired Peptide Nanostructures (2)56:27
Peptide Nanotubes-Nanoordering and Nanostructure (1)58:40
Peptide Nanotubes-Nanoordering and Nanostructure (2)58:47
PNT-Nanophotonics58:48
Nanophotonics-Insulin Amyloid Fibrils (1)58:59
Nanophotonics-Insulin Amyloid Fibrils (2)59:03
Bio-Nano-Piezoelectrics (1)59:07
Bio-Nano-Piezoelectrics (2)59:16
Nanotechnology of Elementary Building Blocks (1)59:38
Nanotechnology of Elementary Building Blocks (2)01:00:35
Acknowledgments01:00:59
Thank you!01:02:11