Tractable Query Answering for Expressive Ontologies and Existential Rules thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Tractable Query Answering for Expressive Ontologies and Existential Rules

Published on Nov 28, 2017748 Views

The disjunctive skolem chase is a sound and complete (albeit non-terminating) algorithm that can be used to solve conjunctive query answering over DL ontologies and programs with disjunctive existenti

Related categories

Chapter list

Tractable Query Answering for Expressive Ontologies and Rules00:00
Disjunctive Existential Rules00:05
The Disjunctive Chase01:36
The Disjunctive Chase - 101:52
The Disjunctive Chase - 202:56
The Disjunctive Chase - 302:59
The Disjunctive Chase - 403:04
The Disjunctive Chase - 503:09
The Disjunctive Chase - 603:18
The Disjunctive Chase - 703:19
The Disjunctive Chase - 803:33
The Disjunctive Chase - 903:43
Ensuring Tractability of the Disjunctive Chase04:52
Dependency graphs05:01
Dependency graphs - 105:33
Dependency graphs - 205:45
Dependency graphs - 305:52
Dependency graphs - 406:05
Dependency graphs - 506:14
Dependency graphs - 606:18
Dependency graphs - 706:23
Dependency graphs - 806:27
Ensuring Polynomiality: Acyclicity06:54
Ensuring Polynomiality: Acyclicity - 107:26
Ensuring Polynomiality: Acyclicity - 207:48
Ensuring Polynomiality: Restricted Arity 107:54
Ensuring Polynomiality: Restricted Arity 1 - 108:05
Ensuring Polynomiality: Restricted Arity ≤ 108:23
Ensuring Polynomiality09:16
Ensuring Polynomiality - 109:27
Braids10:14
Braids - 110:38
Ensuring Polynomiality11:07
Evaluation12:04
OWL Axioms12:20
OWL Ontologies13:27
Acyclic Ontologies13:46
Braid Length14:22
Conclusions and Future Work15:04
Conclusions15:06
Further Results15:57
JOIN US IN DRESDEN16:21