![RDF2Vec: RDF Graph Embeddings for Data Mining thumbnail](https://apiminio.videolectures.net/vln/lectures/24985/1/en/thumbnail.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=masoud%2F20241217%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20241217T093453Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=c517940193b033150273a15a78f81a7d209f0a6bd799c8a119e0ac788f0a6de5)
en-es
en-fr
en-sl
en
0.25
0.5
0.75
1.25
1.5
1.75
2
RDF2Vec: RDF Graph Embeddings for Data Mining
Published on Nov 10, 20163213 Views
Linked Open Data has been recognized as a valuable source for background information in data mining. However, most data mining tools require features in propositional form, i.e., a vector of nominal o
Related categories
Chapter list
RDF2Vec: RDF Graph Embeddings for Data Mining00:00
Introduction - 100:13
Introduction - 200:39
Motivation - 101:25
Motivation - 201:47
Motivation - 301:57
Motivation - 402:02
Vision02:42
RDF2VEC APPROACH03:11
RDF2Vec - 103:16
Word2vec – Neural Language Model04:11
CBOW04:44
Word Embedding - 105:21
Word Embedding - 205:29
Word Embedding - 305:44
Word Embedding - 405:45
Word Embedding - 505:57
Word Embedding - 606:04
Word2vec – Neural Language Model06:14
Skip-gram06:26
RDF2vec - 206:30
Graph Walks RDF2vec - 106:47
Graph Walks RDF2vec - 206:59
Graph Walks RDF2vec - 307:13
Entity Embedding07:23
Weisfeiler-Lehman Kernel - 107:37
Weisfeiler-Lehman Kernel - 208:04
Weisfeiler-Lehman Kernel - 308:11
Weisfeiler-Lehman Kernel - 408:19
WL Kernel RDF2vec - 108:26
WL Kernel RDF2vec - 209:03
EVALUATION09:12
Evaluation Setup09:17
Domain Specific RDF Datasets10:12
Large Cross-Domain RDF Datasets11:05
Results: classification12:02
Results: regression12:09
Results Summary12:38
Other Use-Cases13:58
Conclusion14:33