![Building and Exploring National-wide Enterprise Knowledge Graphs for Investment Analysis in an Incremental Way thumbnail](https://apiminio.videolectures.net/vln/lectures/24966/1/en/thumbnail.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=masoud%2F20250115%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250115T130339Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=17f607a771a8298bf20383690a48025beb68e31c493202fa0c41079e05f80940)
en-es
en-fr
en-sl
en
0.25
0.5
0.75
1.25
1.5
1.75
2
Building and Exploring National-wide Enterprise Knowledge Graphs for Investment Analysis in an Incremental Way
Published on Nov 10, 20161480 Views
Full-fledged enterprise information can be a great weapon in investment analysis. However, enterprise information is scattered in different databases and websites. The information from a single sour
Related categories
Chapter list
Building and Exploring an Enterprise Knowledge Graph for Investment Analysis00:00
Business Motivation - 100:31
Business Motivation - 201:16
Deployment and Business Model - 102:04
Deployment and Business Model - 202:37
Challanges - 103:15
Challanges - 203:59
Challanges - 304:31
What is an EKG - 104:31
What is an EKG - 204:50
What is an EKG - 304:52
What is an EKG - 404:54
What is an EKG - 504:55
What is an EKG - 604:57
What is an EKG - 704:58
Sources - 105:00
Sources - 205:36
Sources - 306:00
Sources - 406:34
Data-driven KG constructing process - 106:46
Data-driven KG constructing process - 206:53
Data-driven KG constructing process - 307:00
Data-driven KG constructing process - 407:05
Data-driven KG constructing process - 507:10
Data-driven KG constructing process - 607:13
Schema Design - 107:14
Schema Design - 207:39
Schema Design - 307:50
D2R Transformation08:49
Information Extraction - 109:23
Information Extraction - 209:34
Information Extraction - 309:35
Information Extraction - 409:40
Information Extraction - 509:43
Data Fusion with Instance Matching09:56
5 Storage Design and Query Optimization10:22
Usage Scenarios12:00
Usage Scenarios (1. General Overview) - 112:15
Usage Scenarios (1. General Overview) - 212:59
Usage Scenarios (1. General Overview) - 313:07
Usage Scenarios (2. Graph Query) - 113:21
Usage Scenarios (2. Graph Query) - 213:39
Usage Scenarios (2. Graph Query) - 313:44
Usage Scenarios (2. Graph Query) - 413:49
Usage Scenarios (2. Graph Query) - 513:58
Usage Scenarios (2. Graph Query) - 614:02
Usage Scenarios (3. Pedigree Analysis) - 114:27
Usage Scenarios (3. Pedigree Analysis) - 214:55
Usage Scenarios (3. Pedigree Analysis) - 315:32
Usage Scenarios (4. Real Controller)16:02
Usage Scenarios (5. Path Discovery ) - 116:12
Usage Scenarios (5. Path Discovery ) - 216:14
Future Work16:20
Thanks!16:51