en-de
en-es
en-fr
en-pt
en-sl
en
en-zh
0.25
0.5
0.75
1.25
1.5
1.75
2
Conditional Classification Trees Using Instrumental Variables
Published on Oct 08, 20073349 Views
The framework of this paper is supervised learning using classification trees. Two types of variables play a role in the definition of the classification rule, namely a response variable and a set of
Chapter list
Conditional Classification Trees Using Instrumental Variables00:00
Outline00:24
Tree-based model01:08
Two problems when using trees01:49
The genesis of our contribution02:34
Partial predictability trees: the idea03:06
Partial predictability trees: the method03:35
The proposed splitting criterion04:15
Partial predictability trees: an example pt 104:40
Partial predictability trees: an example pt 205:05
Partial predictability trees: an example pt 305:23
Path1-23: good clients06:18
Multiple discriminant trees: the idea06:50
Multiple discriminant trees: the method07:25
Multiple discriminant trees: an example pt 107:55
Multiple discriminant trees: an example pt 208:22
Multiple discriminant trees: an example pt 309:08
Path1-8: unsatisfied customers09:14
Path 1-55: satisfied customers09:42
Some remarks10:05
Conclusion remarks10:50
Last but not the least point11:16
References11:40