Learning to align: a statistical approach thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Learning to align: a statistical approach

Published on Oct 08, 200721301 Views

We present a new machine learning approach to the inverse parametric sequence alignment problem: given as training examples a set of correct pairwise global alignments, find the parameter values tha

Related categories

Chapter list

Learning to Align: a Statistical Approach00:00
Outline00:20
Sequence Alignment pt 100:59
Sequence Alignment pt 201:12
Sequence Alignment pt 301:37
Sequence Alignment pt 401:56
Moments of the Scores02:43
The Z-Score03:24
Computing the Z-Score pt 104:04
Computing the Z-Score pt 204:49
Computing the Z-Score pt 305:26
IPSAP05:59
Z-Score Maximization pt 107:52
Z-Score Maximization pt 209:17
Iterative Algorithm pt 110:37
Z-Score Maximization pt 2 (a)11:01
Iterative Algorithm pt 1 (a)11:12
Z-Score Maximization pt 2 (b)11:20
Iterative Algorithm pt 211:29
Experimental Results pt 112:38
Experimental Results pt 213:32
Experimental Results pt 314:21
Summary15:04