Understanding and communicating with data thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Understanding and communicating with data

Published on Oct 06, 20161234 Views

Related categories

Chapter list

Understanding and Communicating with Data00:00
About Me00:17
Data… there’s a lot out there!/101:10
Data… there’s a lot out there!/201:51
Communicating with data/102:41
Communicating with data/203:46
Data Visualisation is…05:04
What about Wikipedia?05:35
An example – Detroit (1)06:02
An example – Detroit (2)07:28
Why data visualisation?08:29
Data isn’t new: we’ve always needed to understand and communicate insights09:17
Cholera in London, 185409:53
John Snow11:04
The First Bar Chart: An apology11:55
Types of Visualisation12:38
Exploratory Visualisation – Where can you afford to live?13:43
Explanatory Visualisation14:39
Storytelling/115:32
Storytelling/215:52
Humans have been telling stories for centuries…16:40
Storytelling with data visualisation17:10
Considerations for the story18:17
1. Your audience18:27
2. The story19:44
2. The story (2)20:56
3. The action21:33
Structuring your story: author- or reader-driven?22:14
Balancing author- and reader-driven stories/122:43
Balancing author- and reader-driven stories/223:59
Balancing author- and reader-driven stories/324:45
Finding a ‘compelling’ narrative25:16
Communicating your message25:56
Structure without a story26:18
Highlighting and Emphasising27:26
Emphasising key information for the mind (1)28:27
Chartjunk29:47
Emphasising key information for the mind (2)30:36
Chartjunk Example31:03
Chartjunk Example - Fixed32:12
Example32:48
Let’s fix this horrible example 33:52
After removing all the ‘junk’ and keeping only the ‘data’, we get:34:56
The Beauty Paradox36:14
Organising and Structuring Information37:20
How is data displayed?37:28
Ordered data38:53
Unordered data/139:23
Unordered data/239:54
Ranking Visual Encodings40:25
Cleveland and McGill - Example41:49
Cleveland and McGill43:43
Choosing a Graphic for Visual Perception43:53
How many dimensions can you find being represented on this map?48:41
Pattern Recognition48:53
Gestalt Theory: Principles of Organisation49:09
Gestalt Theory: Principles of Organisation (2)51:26
Gestalt Theory: Principles of Organisation (4)52:40
Gestalt Theory: Principles of Organisation (5)53:19
Gestalt Theory: Principles of Organisation (6)54:06
Gestalt Theory: Takeaway Message54:43
Who saw a white square over four black circles?55:32
Deceiving your brain56:19
Your Brain is Deceiving You!56:29
Which yellow line is longer?58:01
Which yellow line is longer? (2)58:12
Don’t stretch the truth!58:31
Warning!58:38
Be Objective58:49
Lie Factor: An Example/159:26
Lie Factor: An Example/201:00:50
Lie Factor: An Example/301:01:02
Pie charts + 3D are particularly bad/101:01:12
Pie charts + 3D are particularly bad/201:01:56
What makes a visualisation a ‘bad’ visualisation?01:03:27
Example - Gun deaths in Florida/201:05:35
Example - Gun deaths in Florida/101:05:55
Example - Baby Boomers01:07:06
Example - Facebook Sentiment Data01:13:10
Example - The Facebook Election01:13:32
Data Vis Technologies01:13:54
Web technologies and their role in visualisations01:14:09
HTML - CSS - JavaScript01:14:25
Hypertext01:14:56
CSS (Cascading Style Sheets)01:15:23
Javascript01:15:38
Javascript with HTML01:15:52
D3.js (Data-Driven Documents)01:16:27
General steps01:17:02
D301:17:39
D3: Chain Syntax/101:18:07
D3: Chain Syntax/201:18:29
D3 Example01:18:33
Tableau01:19:37
Tableau Public01:20:51
Summary 01:21:20