Quality Assessment of Linked Datasets using Probabilistic Approximations thumbnail
Pause
Mute
Subtitles not available
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Quality Assessment of Linked Datasets using Probabilistic Approximations

Published on Jul 15, 20151729 Views

With the increasing application of Linked Open Data, assessing the quality of datasets by computing quality metrics becomes an issue of crucial importance. For large and evolving datasets, an exact,

Related categories

Chapter list

Quality Assessment of Linked Datasets using Probabilistic Approximation00:00
The Problem - 100:18
The Problem - 200:26
The Problem - 300:29
Hypothesis01:04
Overview - 101:24
Overview - 202:29
Overview - 302:59
Reservoir Sampling03:11
Dereferenceability - 103:27
Dereferenceability - 203:47
Dereferenceability - 303:54
Dereferenceability - 404:00
Dereferenceability - 504:03
Dereferenceability - 604:09
Dereferenceability - 704:13
Dereferenceability - 804:17
Dereferenceability - 904:37
Dereferenceability - 1004:48
Dereferenceability - 1104:54
Dereferenceability - 1204:59
Dereferenceability - 1305:00
Dereferenceability - 1405:04
Dereferenceability - 1505:04
Dereferenceability - 1605:11
Dereferenceability - 1705:19
Dereferenceability - 1805:26
Experiment Results - 105:37
Experiment Result - Time - 106:20
Experiment Result - Time - 206:35
Links to External Data Providers06:56
Links to External Data - 107:04
Links to External Data - 207:08
Links to External Data - 307:08
Links to External Data - 407:34
Links to External Data - 507:54
Links to External Data - 607:58
Links to External Data - 708:04
Links to External Data - 808:09
Experiment Results - 208:27
Experiment Result - Time - 309:02
Experiment Result - Time - 409:19
Sum Up (I)09:32
Overview - 410:07
Bloom Filters - 110:15
Bloom Filters - 210:24
Bloom Filters - 310:53
Bloom Filters - 410:56
Bloom Filters - 511:02
Bloom Filters - 611:09
Bloom Filters - 711:31
Bloom Filters - 811:36
Extensional Conciseness - 111:37
Extensional Conciseness - 211:49
Extensional Conciseness - 312:00
Extensional Conciseness - 412:14
Extensional Conciseness - 512:22
Extensional Conciseness - 612:39
Extensional Conciseness - 713:13
Extensional Conciseness - 813:21
Extensional Conciseness - 913:26
Experiment Results - 313:44
Experiment Result - Time - 514:16
Sum Up (II)14:36
Overview - 515:00
Clustering Coefficient Estimation15:13
Clustering Coefficient of a Network - 115:21
Clustering Coefficient of a Network - 215:42
Clustering Coefficient of a Network - 315:50
Clustering Coefficient of a Network - 415:52
Clustering Coefficient of a Network - 516:00
Clustering Coefficient of a Network - 616:05
Clustering Coefficient of a Network - 716:26
Clustering Coefficient of a Network - 816:27
Clustering Coefficient of a Network - 916:36
Clustering Coefficient of a Network - 1016:40
Clustering Coefficient of a Network - 1116:41
Clustering Coefficient of a Network - 1216:48
Experiment Results - 417:18
Experiment Result - Time - 518:16
Sum Up (III)18:48
Conclusion: Lessons Learned - 119:02
Conclusion: Lessons Learned - 219:11
Conclusion: Lessons Learned - 319:21
Conclusion: Lessons Learned - 419:43
Conclusion: Lessons Learned - 520:10