en
0.25
0.5
0.75
1.25
1.5
1.75
2
SPARQL Query Verbalization for Explaining Semantic Search Engine Queries
Published on Jul 30, 20142184 Views
In this paper we introduce Spartiqulation, a system that translates SPARQL queries into English text. Our aim is to allow casual end users of semantic applications with limited to no expertise in the
Related categories
Chapter list
SPARQL Query Verbalization for Explaining Semantic Search Engine Queries00:00
Overview00:20
Motivation (1/2)00:49
Motivation (2/2)02:00
Anatomy of a query verbalization (1/4) - 103:38
Anatomy of a query verbalization (1/4) - 204:41
Anatomy of a query verbalization (1/4) - 304:52
Anatomy of a query verbalization (2/4) - 105:00
Anatomy of a query verbalization (2/4) - 205:10
Anatomy of a query verbalization (2/4) - 305:26
Anatomy of a query verbalization (2/4) - 405:31
Anatomy of a query verbalization (3/4) - 105:49
Anatomy of a query verbalization (3/4) - 205:57
Anatomy of a query verbalization (3/4) - 306:03
Anatomy of a query verbalization (3/4) - 406:09
Anatomy of a query verbalization (4/4) - 106:11
Anatomy of a query verbalization (4/4) - 206:34
Anatomy of a query verbalization (4/4) - 306:39
Main idea06:48
Example – SPARQL query09:11
Example query – graph representation - 109:19
Example query – graph representation - 210:26
Example query – graph representation - 310:33
Example query – graph representation - 410:36
Example query – graph representation - 510:39
Example query – graph representation - 610:45
Example query – graph representation - 710:58
Example query – message rep.11:00
Example – Subject verbalization - 112:06
Example – Subject verbalization - 213:52
Example – Constraint verbalization (1/2)14:06
Example – Constraint verbalization (2/2)15:46
Example – verbalization result - 116:10
Example – verbalization result - 216:22
Evaluation (1/2)16:59
Evaluation (2/2)18:28
Conclusions19:43
Thank you!20:42