en
0.25
0.5
0.75
1.25
1.5
1.75
2
Unfolding an Indoor Origami World
Published on Oct 29, 20143507 Views
In this work, we present a method for single-view reasoning about 3D surfaces and their relationships. We propose the use of mid-level constraints for 3D scene understanding in the form of convex and
Related categories
Chapter list
Unfolding an Indoor Origami World - 100:00
Unfolding an Indoor Origami World - 200:10
Unfolding an Indoor Origami World - 300:21
Local Evidence00:47
Constraints01:22
Constraints for Single Image 3D - 101:38
Constraints for Single Image 3D - 201:54
Constraints for Single Image 3D - 302:15
Constraints for Single Image 3D - 402:23
Constraints for Single Image 3D - 502:36
Constraints for Single Image 3D - 602:44
Constraints for Single Image 3D - 702:53
Mid-level in the Past03:16
Our Mid-Level Constraints03:47
This Work04:17
Overview - 104:34
Overview - 204:47
Parameterization - 104:50
Parameterization - 204:56
Parameterization - 305:16
Encoding Surface Normals - 105:32
Encoding Surface Normals - 205:43
Encoding Surface Normals - 305:47
Encoding Surface Normals - 406:03
Related Parameterizations06:12
Overview - 306:21
Parameterization - 406:29
Formulation06:41
Unaries - 106:49
Unaries - 206:53
Unaries - 307:17
Unaries - 407:38
Binaries07:45
Convex/Concave Constraints - 107:54
Convex/Concave Constraints - 208:13
Convex/Concave Constraints - 308:21
Convex/Concave Constraints - 408:30
Convex/Concave Constraints - 508:37
Convex/Concave Constraints - 608:45
Detecting Convex/Concave08:53
Smoothness09:13
Constraints09:30
Solving the Model09:53
Overview - 410:03
Dataset10:09
Qualitative Results - 110:20
Qualitative Results - 210:26
Qualitative Results - 310:35
Qualitative Results - 410:44
Surface Connection Graphs10:59
Baseline11:28
Quantitative Results - 111:44
Quantitative Results - 212:18
Failure Modes - 112:46
Failure Modes - 213:16
Conclusion13:35
Thank You13:57