en
0.25
0.5
0.75
1.25
1.5
1.75
2
Semantic Segmentation with Second-Order Pooling
Published on Nov 12, 20125934 Views
Feature extraction, coding and pooling, are important components on many contemporary object recognition paradigms. In this paper we explore novel pooling techniques that encode the second-order stati
Related categories
Chapter list
Semantic Segmentation with Second-Order Pooling00:00
Semantic Segmentation (1)00:05
Semantic Segmentation (2)00:39
Semantic Segmentation (3)00:55
Semantic Segmentation (4)01:24
Semantic Segmentation (5)01:31
Semantic Segmentation (6)01:40
Semantic Segmentation (7)01:42
Semantic Segmentation (8)01:43
Semantic Segmentation (9)01:44
Semantic Segmentation (10)01:52
Describing Free-form Regions01:53
Aggregation-based Descriptors (1)02:26
Aggregation-based Descriptors (2)02:57
Aggregation-based Descriptors (3)03:02
Aggregation-based Descriptors (4)03:18
Aggregation-based Descriptors (5)03:28
Aggregation-based Descriptors (6)03:39
Aggregation-based Descriptors (7)03:58
Second-Order Pooling (1)04:28
Second-Order Pooling (2)04:32
Second-Order Pooling (3)04:41
Second-Order Pooling (4)04:59
Second-Order Pooling (5)05:12
Second-Order Pooling (6)05:18
Second-Order Pooling (7)05:23
Second-Order Pooling (8)05:41
Second-Order Pooling (9)05:45
Embedding SPD Manifold in Euclidean Space (1)05:51
Embedding SPD Manifold in Euclidean Space (2)06:05
Sequence of Operations (1)06:30
Sequence of Operations (2)07:15
Additionally we use better local descriptors with pooling methods07:17
Local Feature Enrichment (1/2) Relative Position07:34
Local Feature Enrichment (2/2) Pixel Color08:01
Region Classification VOC 2011 (1)08:17
Region Classification VOC 2011 (2)08:59
Region Classification VOC 2011 (3)09:08
Region Classification VOC 2011 (4)09:31
Region Classification VOC 2011 (5)09:47
Semantic Segmentation in the Wild Pascal VOC 2011 (1)09:56
Semantic Segmentation in the Wild Pascal VOC 2011 (2)11:08
Semantic Segmentation in the Wild Pascal VOC 2011 (3)11:56
Semantic Segmentation in the Wild Pascal VOC 2011 (4)12:04
Caltech 101 (1)12:27
Caltech 101 (2)12:38
Caltech 101 (3)12:44
Conclusions13:03
Thank you!14:04