en
0.25
0.5
0.75
1.25
1.5
1.75
2
Diverse M-Best Solutions in Markov Random Fields
Published on Nov 12, 20126824 Views
Much effort has been directed at algorithms for obtaining the highest probability (MAP) configuration in probabilistic (random field) models. In many situations, one could benefit from additional high
Related categories
Chapter list
Diverse M-Best Solutions in Markov Random Fields00:00
Local Ambiguity (1)00:12
Local Ambiguity (2)00:25
Problems with MAP (1)00:39
Problems with MAP (2)01:06
Problems with MAP (3)01:13
Problems with MAP (4)01:16
Problems with MAP (5)01:57
Multiple Predictions (1)02:04
Multiple Predictions (2)02:27
Multiple Predictions (3)02:35
Multiple Predictions (4)02:42
Multiple Predictions (5)02:49
MAP Integer Program (1)03:17
MAP Integer Program (2)03:33
MAP Integer Program (3)03:36
MAP Integer Program (4)03:39
MAP Integer Program (5)03:40
MAP Integer Program (6)03:41
MAP Integer Program (7)03:43
MAP Integer Program (8)03:47
MAP Integer Program (9)03:53
MAP Integer Program (10)03:56
Diverse 2nd-Best (1)04:01
Diverse 2nd-Best (2)04:10
Diverse 2nd-Best (3)04:21
Diverse 2nd-Best (4)04:25
Diverse M-Best (1)04:35
Diverse 2nd-Best (5)04:42
Diverse 2nd-Best (6)05:12
Diverse 2nd-Best (7)05:14
Diverse 2nd-Best (8)05:18
Diverse 2nd-Best (9)05:20
Diverse 2nd-Best (10)05:35
Diverse 2nd-Best (11)05:42
Diverse 2nd-Best (12)05:49
Diverse 2nd-Best (13)05:55
Diverse 2nd-Best (14)06:08
Diverse 2nd-Best (15)06:15
Diversity (1)06:22
Diversity (2)06:52
Hamming Diversity (1)06:57
Hamming Diversity (2)07:17
Hamming Diversity (3)07:35
Experiments 08:07
Experiment #1 (1)08:54
Experiment #1 (2)09:29
Experiment #2 (1)09:41
Experiment #2 (2)10:02
Experiment #2 (3)10:06
Experiment #2 (4)10:22
Experiment #2 (5)10:41
Experiment #3 (1)10:50
Experiment #3 (2)11:08
Experiment #3 (3)11:32
Experiment #3 (4)11:58
Experiment #3 (5)12:09
Summary12:22
Thank you!12:54