en-es
en
0.25
0.5
0.75
1.25
1.5
1.75
2
Learning Using Local Membership Queries
Published on Aug 09, 20133560 Views
We introduce a new model of membership query (MQ) learning, where the learning algorithm is restricted to query points that are close to random examples drawn from the underlying distribution. The lea
Related categories
Chapter list
Learning using Local Membership Queries00:00
PAC + MQ Learning [Angluin ‘87] - 100:07
PAC + MQ Learning - 101:12
PAC + MQ Learning [Angluin ‘87] - 201:54
PAC + MQ Learning - 202:34
Our Model02:57
PAC + local-MQ Learning03:30
Warmup: 1-local MQs04:23
Our Results(1)05:36
Our Results(2)06:10
Our Results(3)06:30
Learning sparse polynomials - 106:51
Learning sparse polynomials - 206:58
Learning sparse polynomials - 308:01
Learning sparse polynomials - 408:33
Learning sparse polynomials - 509:13
Low degree approximation09:16
Learning sparse polynomials - 610:03
Kushilevitz-Mansour Algorithm - 110:12
Kushilevitz-Mansour Algorithm - 210:38
Kushilevitz-Mansour Algorithm - 311:26
Kushilevitz-Mansour Algorithm - 411:37
Kushilevitz-Mansour Algorithm - 511:59
Our Algorithm - 112:38
Our Algorithm - 213:32
Our Algorithm - 313:38
Our Algorithm - 413:46
Our Algorithm - 514:52
Non-zero-test (x1) - 115:26
Non-zero-test (x1) - 215:48
Non-zero-test (S)16:23
Our Algorithm - 616:35
Our Algorithm - 717:11
Our Algorithm - 817:30
Conclusions17:34
Open Problems18:00
Thank You18:48