en-es
en
0.25
0.5
0.75
1.25
1.5
1.75
2
Sparse-Coded Features for Image Retrieval
Published on Apr 03, 20142943 Views
State-of-the-art image retrieval systems typically represent an image with a bag of low-level features. Since different images often exhibit different kinds of low-level characteristics, it is desir
Related categories
Chapter list
Sparse-Coded Features for Image Retrieval00:00
Problem Statement00:14
Previous Work - 100:41
Previous Work - 201:43
Sparse coding for image search - 102:32
Sparse coding for image search - 203:07
Sparse coding for image search - 303:37
Sparse coding for image search - 403:48
Sparse coding for image search - 504:10
Sparse coding for image search - 604:19
Sparse coding for image search - 704:42
Sparse coding for image search - 804:43
Sparse coding for image search - 905:05
Sparse coding for image search - 1005:21
Sparse coding for image search - 1105:24
Sparse coding for image search - 1205:43
Sparse coding for image search - 1306:04
Sparse coding for image search - 1406:09
Sparse coding for image search - 1506:17
Sparse coding for image search - 1606:29
Multiple feature - 106:35
Multiple feature - 206:42
Multiple feature - 306:49
Multiple feature - 407:04
Multiple feature - 507:09
Multiple feature - 607:13
Multiple feature - 707:18
Multiple feature - 807:33
Multiple feature - 907:38
Sparse-coded micro feature - 108:06
Sparse-coded micro feature - 208:45
Sparse-coded micro feature - 309:09
Sparse-coded micro feature - 409:18
Sparse-coded micro feature - 509:36
Single feature comparison09:38
Multiple features - 110:12
Multiple features - 210:34
Scalability study - 110:40
Scalability study - 211:07
Scalability study - 311:12
Scalability study - 411:17
Conclusion11:24
Thank you!11:56