en-es
en
0.25
0.5
0.75
1.25
1.5
1.75
2
If Only We Had Tracked Something Like This Before
Published on Apr 03, 20142488 Views
We want algorithms that can tell us what went where in a video. Tracking is hard because each situation is different, featuring a different camera operator, and subject(s) whose appearance, motion, an
Related categories
Chapter list
If Only We Had Tracked Something Like This Before00:00
Gabriel´s Team00:28
Special Thanks to ...01:05
Wayne Gretzky01:52
Tracking Example - 105:42
Tracking Example - 206:19
Tracking Example - 306:22
The Tracking Wishlist - 106:49
The Tracking Wishlist - 208:01
Simple Problem08:12
Infer Flow Confidence09:29
Approach09:50
Model - 111:15
Model - 212:19
Infer Confidence - 112:44
Infer Confidence - 213:47
Infer Confidence - 313:48
Infer Confidence - 413:52
Infer Confidence - 513:57
Infer Confidence - 614:01
Infer Confidence - 714:43
Generating More Data - 115:06
Generating More Data - 217:10
Generating More Data - 317:15
Generating More Data - 417:22
Generating More Data - 517:43
Generating More Data - 618:03
Generating More Data - 718:06
Generating More Data - 820:36
Generating More Data - 920:46
Generating More Data - 1020:49
Generating More Data - 1120:56
Generating More Data - 1221:17
Generating More Data - 1321:59
Generating More Data - 1422:16
K Algorithms: OurseKWay - 123:44
K Algorithms: OurseKWay - 225:09
Example Application: Occlusion Regions - 126:14
Example Application: Occlusion Regions - 232:59
Example Application: Occlusion Regions - 333:00
But Pixels Aren´t Idependent ...34:16
Motion Models34:47
Track + Predict Real World Motion35:16
Does the Motion Model Matter? - 137:25
Does the Motion Model Matter? - 239:32
Does the Motion Model Matter? - 340:29
Does the Motion Model Matter? - 441:05
Does the Motion Model Matter? - 541:16
Recipe for Using Motion Models42:06
Fixed vs. Inferred Motion Category - 143:19
Fixed vs. Inferred Motion Category - 244:27
Fixed vs. Inferred Motion Category - 344:49
Video: Infer Which Motion Model45:49
Be like Wayne Gretzky48:09
Summary48:48
Thank you!50:26