Density Ratio Estimation in Machine Learning thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Density Ratio Estimation in Machine Learning

Published on Dec 03, 20125926 Views

In statistical machine learning, avoiding density estimation is essential because it is often more difficult than solving a target machine learning problem itself. This is often referred to as Vapnik

Related categories

Chapter list

Density Ratio Estimation in Machine Learning00:00
Machine Learning (ML)00:47
Universal Approach01:15
Task-Specific Approach02:25
Task-Specific Approach (cont.)03:19
Intermediate Approach04:09
Density-Ratio Estimation05:22
Intuitive Justification06:29
Quick Conclusions08:16
Organization of This Lecture09:15
Density Ratio Estimation: Problem Formulation10:08
Density Estimation Approach10:41
Density Fitting11:52
Kullback-Leibler Importance Estimation Procedure (KLIEP)11:59
KLIEP: Formulation13:19
KLIEP: Algorithm14:55
KLIEP: Convergence Properties16:04
KLIEP: Numerical Example18:37
KLIEP: Summary20:25
Density-Ratio Fitting23:10
Least-Squares Importance Fitting (LSIF)23:26
Constrained LSIF Formulation25:00
cLSIF: Regularization Path Tracking26:11
Unconstrained LSIF Formulation28:56
uLSIF: Analytic LOOCV Score30:15
uLSIF: Theoretical Properties31:17
uLSIF: Numerical Example32:32
LSIF: Summary34:36
Importance sampling38:00
Learning under Covariate Shift38:43
Ordinary Least-Squares (OLS)40:34
Law of Large Numbers41:44
Importance Weighting42:42
Importance-Weighted Least-Squares43:50
Model Selection (1)44:45
Model Selection (2)46:39
Experiments: Speaker Identification48:01
Experiments: Text Segmentation49:57
Other Applications52:10
Distribution comparison55:38
Inlier-Based Outlier Detection55:56
Experiments59:47
Failure Prediction in Hard-Disk Drives01:00:49
Other Applications01:02:50
Divergence Estimation01:03:41
Real-World Applications01:04:16
Mutual Information Estimation (1)01:07:04
Mutual Information Estimation (2)01:07:29
Experiments: Methods Compared01:09:11
Datasets for Evaluation01:09:24
MI Approximation Error01:09:58
Estimation of Squared-Loss Mutual Information (SMI)01:11:19
Usage of SMI Estimator01:12:30
Sufficient Dimension Reduction01:15:56
Sufficient Dimension Reduction via SMI Maximization01:17:37
Experiments01:18:03
Conditional probability estimation01:20:12
Conditional Density Estimation01:23:40
Experiments: Transition Estimation for Mobile Robot01:25:48
Probabilistic Classification01:28:00
Numerical Example01:30:23
More Experiments01:31:12
Other Applications01:31:39
More on Density Ratio Estimation01:32:41
Direct Density-Ratio Estimation with Dimensionality Reduction (D3)01:33:04
Hetero-distributional Subspace (HS)01:33:28
Conclusions01:35:12
Books on Density Ratios01:36:17
Acknowledgements01:36:34