Learning the Bayesian Network Structure: Dirichlet Prior versus Data
published: July 30, 2008, recorded: July 2008, views: 8335
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
In the Bayesian approach to structure learning of graphical models, the equivalent sample size (ESS) in the Dirichlet prior over the model parameters was recently shown to have an important effect on the maximum-a-posteriori estimate of the Bayesian network structure. In our first contribution, we theoretically analyze the case of large ESS-values, which complements previous work: among other results, we find that the presence of an edge in a Bayesian network is favored over its absence even if both the Dirichlet prior and the data imply independence, as long as the conditional empirical distribution is notably different from uniform. In our second contribution, we focus on realistic ESS-values, and provide an analytical approximation to the ‘optimal’ ESS-value in a predictive sense (its accuracy is also validated experimentally): this approximation provides an understanding as to which properties of the data have the main effect determining the ‘optimal’ ESS-value.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: