Resampling Approaches for Handling Imbalanced Regression Tasks

author: Luis Torgo, University of Porto
published: Jan. 23, 2017,   recorded: February 2017,   views: 2288


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Imbalanced classification tasks have been studied by the research community for a long time. Numerous problems have been identified with standard approaches and new proposals have been put forward for addressing these relevant tasks. Surprisingly, the same attention has not been given to predictive tasks with a numeric target variable, i.e. regression. However, similar problems occur on these domains, when the target of the end-user is the performance on a subset of rare values of the target variable. As in classification standard evaluation metrics fail, and new approaches are required to bias the learning algorithms to the end-user goals. In this talk we will present resampling approaches to these problems. These methods have as main advantage the possibility of being used together with any existing regression tool and still focus on the goals of the end-user, i.e. values poorly represented in the training data.

See Also:

Download slides icon Download slides: solomon_torgo_regression_tasks_01.pdf (466.6 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: