Semantic text features from small world graphs

author: Jure Leskovec, Computer Science Department, Stanford University
published: Feb. 25, 2007,   recorded: February 2005,   views: 6530


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We present a set of methods for creating a semantic representation from a collection of textual documents. Given a document collection we use a simple algorithm to connect the documents into a tree or a graph. Using the imposed topology we define a feature and document similarity measures. We use the kernel alignment to compare the quality of various similarity measures. Results show that the document similarity defined over the topology gives better alignment than standard cosine similarity measure on a bag of words document representation.

See Also:

Download slides icon Download slides: slsfs05_leskovec_stfsw_01.ppt (191.0┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: