A statistical learning approach to subspace identification of dynamical systems

author: Tijl De Bie, Department of Engineering Mathematics, University of Bristol
published: Feb. 25, 2007,   recorded: February 2005,   views: 6722


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Among the different approaches to identification of linear dynamical systems, subspace identification has become increasingly popular in the last decade. The reasons are the algorithmic simplicity thanks to the absence of non-convex optimization problems, the numerical stabil- ity and the statistical properties. Interestingly, concerning the statistical side, research in subspace identification has been concentrated on proving properties related to asymptotic unbiasedness. In this extended abstract we motivate how the use of an appropriate regularization can be helpful in the small sample case. Furthermore, this regularization allows one to use the kernel trick to identify systems where the input term in the state and output equations is a nonlinear function of the input variables.

See Also:

Download slides icon Download slides: slsfs05_bie_slasi_01.ppt (936.0┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: