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Abstract

We present a new learning strategy for classification problems in which train and/or
test data suffer from missing features. In previous work, instances are represented
as vectors from some feature space and one is forced to impute missing values or
to consider an instance-specific subspace. In contrast, our method considers in-
stances as sets of (feature,value) pairs which naturally handle the missing value
case. Building onto this framework, we propose a classification strategy for sets.
Our proposal maps (feature,value) pairs into an embedding space and then non-
linearly combines the set of embedded vectors. The embedding and the combina-
tion parameters are learned jointly on the final classification objective. This simple
strategy allows great flexibility in encoding prior knowledge about the features in
the embedding step and yields advantageous results compared to alternative solu-
tions over several datasets.

1 Introduction

Many applications require classification techniques dealing with train and/or test instances with miss-
ing features: e.g. a churn predictor might deal with incomplete log features for new customers,
a spam filter might be trained from data originating from servers storing different features, a face
detector might deal with images for which high resolution cues are corrupted.

In this work, we address a learning setting in which the missing features are either missing at ran-
dom [6], i.e. deletion due to corruption or noise, or structurally missing [4], i.e. some features do not
make sense for some examples, e.g. activity history for new customers. We do not consider setups
in which the features are maliciously deleted to fool the classifier [5]. Techniques for dealing with
incomplete data fall mainly into two categories: techniques which impute the missing features and
techniques considering an instance-specific subspace.

Imputation-based techniques are the most common. In this case, the data instances are viewed as
feature vectors in a high-dimensional space and the classifier is a function from this space into the
discrete set of classes. Prior to classification, the missing vector components need to be imputed.
Early imputation approaches fill any missing value with a constant, zero or the average of the feature
over the observed cases [18]. This strategy neglects inter-feature correlation, and completion tech-
niques based on k-nearest-neighbors (k-NN) have subsequently been proposed to circumvent this
limitation [1]. Along this line, more complex strategies based on generative models have been used
to fill missing features according to the most likely value given the observed features. In this case, the
Expectation-Maximization algorithm is typically adopted to estimate the data distribution over the
incomplete training data [9]. Building upon this generative model strategy, several approaches have
considered integrating out the missing values, either by integrating the loss [2] or the decision func-
tion [22]. Recently, [15] and [6] have proposed to avoid the initial maximum likelihood distribution
estimation. Instead, they proposed to learn jointly the generative model and the decision function to
optimize the final classification loss.

As an alternative to imputation-based approaches, [4] has proposed a different framework. In this
case, each instance is viewed as a vector from a subspace of the feature space determined by its
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Figure 1: Feature Set Embedding: An example is given a set of (feature, value) pairs. Each pair
is mapped into an embedding space, then the embedded vectors are combined into a single vector
(either linearly with mean or non-linearly with max). Linear classification is then applied. Our
learning procedure learns both the embedding space and the linear classifier jointly.

observed features. A decision function is learned for each specific subspace and parameter sharing
between the functions allows the method to achieve tractability and generalization. Compared to
imputation-based approaches, this strategy avoids choosing a generative model, i.e. making an as-
sumption about the missing data. Other alternatives to imputation have been proposed in [10] and
[5]. These approaches focus on linear classifiers and propose learning procedures which avoid con-
centrating the weights on a small subset of the features, which helps achieve better robustness with
respect to feature deletion.

In this work, we propose a novel strategy called feature set embedding. Contrary to previous work,
we do not consider instances as vectors from a given feature space. Instead, we consider instances
as a set of (feature, value) pairs and propose to learn to classify sets directly. For that purpose, we
introduce a model which maps each (feature, value) pair onto an embedding space and combines the
embedded pairs into a single vector before applying a linear classifier, see Figure 1. The embedding
space mapping and the linear classifier are jointly learned to maximize the conditional probability
of the label given the observed input. Contrary to previous work, this set embedding framework
naturally handles incomplete data without modeling the missing feature distribution, or considering
an instance specific decision function. Compared to other work on learning from sets, our approach
is original as it proposes to learn to embed set elements and to classify sets as a single optimization
problem, while prior strategies learn their decision function considering a fixed mapping from sets
into a feature space [12, 3].

The rest of the paper is organized as follows: Section 2 presents the proposed approach, Section 3
describes our experiments and results. Section 4 concludes.

2 Feature Set Embedding

We denote an example as (X, y) where X = {(fi, vi)}|X|i=1 is a set of (feature, value) pairs and y is a
class label in Y = {1, . . . , k}. The set of features is discrete, i.e. ∀i, fi ∈ {1, . . . d}, while the feature
values are either continuous or discrete, i.e. ∀i, vi ∈ Vfi where Vfi = R or Vfi = {1, . . . , cfi}.
Given a labeled training dataset Dtrain = {(Xi, yi)}ni=1, we propose to learn a classifier g which
predicts a class from an input set X .

For that purpose, we combine two levels of modeling. At the lower level, (feature, value) pairs are
individually mapped into an embedding space of dimensionm: given an exampleX = {(fi, vi)}|X|i=1,
a function p predicts an embedding vector pi = p(fi, vi) ∈ Rm for each feature value pair (fi, vi). At
the upper level, the embedded vectors are combined to make the class prediction: a function h takes
the set of embedded vectors {pi}|X|i=1 and predicts a vector of confidence values h({pi}|X|i=1) ∈ Rk in
which the correct class should be assigned the highest value. Our classifier composes the two levels,
i.e g = h ◦ p. Intuitively, the first level extracts the information relevant to class prediction provided
by each feature, while the second level combines this information over all observed features.
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2.1 Feature Embedding

Feature embedding offers great flexibility. It can accommodate discrete and continuous data and
allows encoding prior knowledge on characteristics shared between groups of features. For discrete
features, the simplest embedding strategy learns a distinct parameter vector for each (f, v) pair, i.e.

p(f, v) = Lf,v where Lf,v ∈ Rm.

For capacity control, rank regularization can be applied,

p(f, v) = WLf,v where Lf,v ∈ Rl and W ∈ Rm×l,

In this case, l < m is a hyperparameter bounding the rank of WL, where L denotes the matrix
concatenating all Lf,v vectors. One can further indicate that two pairs (f, v) and (f, v′) originate
from the same feature by parameterizing Lf,v as

Lf,v =

[
L

(a)
f

L
(b)
f,v

]
where

{
L

(a)
f ∈ Rl(a)

and L(b)
f,v ∈ Rl(b)

l(a) + l(b) = l
(1)

Similarly, one can indicate that two pairs (f, v) and (f ′, v) shares the same value by parameterizing,

Lf,v =

[
L

(a)
f,v

L
(b)
v

]
where

{
L

(a)
f,v ∈ Rl(a)

and L(b)
v ∈ Rl(b)

l(a) + l(b) = l
(2)

This is useful when feature values share a common physical meaning, like gray levels at different
pixel locations or temperatures measured by different sensors. Of course, the parameter sharing
strategies (1) and (2) can be combined.

When the feature values are continuous, we adopt a similar strategy and define

p(f, v) = W

[
L

(a)
f

vL
(b)
f

]
where

{
L

(a)
f ∈ Rl(a)

and L(b)
f ∈ Rl(b)

l(a) + l(b) = l
(3)

where L(a)
f informs about the presence of feature f , while vL(b)

f informs about its value. If the model

is thought not to need presence information, L(a)
f can be omitted, i.e. l(a) = 0.

When the dataset contains a mix of continuous and discrete features, both embedding approaches can
be used jointly. Feature embedding is hence a versatile strategy; the practitioner defines the model
parameterization according to the nature of the features, and the learned parameters L andW encode
the correlation between features.

2.2 Classifying from an Embedded Feature Set

The second level of our architecture h considers the set of embedded features and predicts a vector
of confidence values. Given an example X = {(fi, vi)}|X|i=1, the function h takes the set P =
{p(fi, vi)}|X|i=1 as input, and outputs h(P ) ∈ Rk according to

h(P ) = V Φ(P )

where Φ is a function which takes a set of vector of Rm and outputs a single vector of Rm, while V
is a k-by-m matrix. This second level is hence related to kernel methods for sets, which first apply a
fixed mapping Φ from sets to vectors, before learning a linear classifier in the feature space [12]. In
our case, however, we make sure that Φ is a generalized differentiable function [19], so that h and p
can be optimized jointly. In the following, we consider two alternatives for Φ: a linear function, the
mean, and a non-linear function, the component-wise max.

Linear Model In this case, one can remark that

h(P ) = V mean({p(fi, vi)}|X|i=1)

= V mean({WLfi,vi}
|X|
i=1)

= VW mean({Lfi,vi}
|X|
i=1)
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by linearity of the mean. Hence, in this case, the dimension of the embedding space m bounds
the rank of the matrix VW . This also means that considering m > k is irrelevant in the linear
case. In the specific case where features are continuous and no presence information is provided,
i.e. Lf,v = vL

(b)
f , our model is equivalent to a classical linear classifier operating on feature vectors

when all features are present, i.e. |X| = d,

g(X) = VW mean({Lfi,vi
}di=1) =

1
d
VW

d∑
i=1

viL
(b)
fi

=
1
d

(VWL)v

where L denotes the matrix [L(b)
f1
, . . . , L

(b)
fd

] and v denotes the vector [v1, . . . , vd]. Hence, in this
case, our model corresponds to

g(X) = Mv where M ∈ Rk×d s.t. rank(M) = min{k, l,m, d}

Non-linear Model In this case, we rely on the component-wise max. This strategy can model
more complex decision functions. In this case, selecting m > k, l is meaningful. Intuitively, each
dimension in the embedding space provides a meta-feature describing each (feature, value) pair,
the max operator then outputs the best meta-feature match over the set of (feature, value) pairs,
performing a kind of soft-OR, i.e. checking whether there is at least one pair for which the meta-
feature is high. The final classification decision is then taken as a linear combination of the m
soft-ORs. One can relate our use of the max operator to its common use in fixed set mapping for
computer vision [3].

2.3 Model Training

Model learning aims at selecting the parameter matrices L,W and V . For that purpose, we maximize
the (log) posterior probability of the correct class over the training set Dtrain = {(Xi, yi)}ni=1, i.e.

C =
n∑

i=1

logP (yi|Xi)

where model outputs are mapped to probabilities through a softmax function, i.e.

P (y|X) =
exp(g(X)y)∑k

y′=1 exp(g(X)y′)
.

Capacity control is achieved by selecting the hyperparameters l and m. For linear models, the crite-
rion C is referred to as the multiclass logistic regression objective and [16] has studied the relation
between C and margin maximization. In the binary case (k = 2), the criterion C is often referred to
as the cross entropy objective.

The maximization ofC is conducted through stochastic gradient ascent for random initial parameters.
This algorithm enables the addressing of large training sets and has good properties for non-convex
problems [14], which is of interest for our non-linear model and for the linear model when rank
regularization is used. One can note that our non-linear model relies on the max function, which is
not differentiable everywhere. However, [8] has shown that gradient ascent can also be applied to
generalized differentiable functions, which is the case of our criterion.

3 Experiments

Our experiments consider different setups: features missing at train and test time, features missing
only at train time, features missing only at test time. In each case, our model is compared to alterna-
tive solutions relying on experimental setups introduced in prior work. Finally, we study our model
in various conditions over the larger MNIST dataset.

3.1 Missing Features at Train and Test Time

The setup in which features are missing at train and test time is relevant to applications suffering
sensor failure or communication errors. It is also relevant to applications in which some features are
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Table 1: Dataset Statistics
Train set Test set # eval. Total # Missing Continuous

size size splits feat. feat.(%) or discrete
UCI sick 2,530 633 5 25 90 c

pima 614 154 5 8 90 c
hepatitis 124 31 5 19 90 c
echo 104 27 5 7 90 c
hypo 2,530 633 5 25 90 c

MNIST-5-vs-6 1,000 200 2 784 25 d
Cars 177 45 5 1,900 62 d
USPS 1,000 6,291 100 256 85? c
Physics 1,000 5,179 100 78 85? c
Mine 500 213 100 41 26? c
MNIST-miss-test† 12×100 12×300 20 784 0 to 99† d
MNIST-full 60,000 10,000 1 784 0 to 87 d
? Features missing only at training time for USPS, Physics and Mine.
† Features missing only at test time for MNIST-miss-test. This set presents 12 binary problems, 4vs9,

3vs5, 7vs9, 5vs8, 3vs8, 2vs8, 2vs3, 8vs9, 5vs6, 2vs7, 4vs7 and 2vs6, each having 100 examples for
training, 200 for validation and 300 for test.

structurally missing, i.e. the measurements are absent because they do not make sense (e.g. see the
car detection experiments).

We compare our model to alternative solutions over the experimental setup introduced in [4]. Three
sets of experiments are considered. The first set relies on binary classification problems from the
UCI repository. For each dataset, 90% of the features are removed at random. The second set of
experiments considers the task of discriminating between handwritten characters of 5 and 6 from
the MNIST dataset. Contrary to UCI, the deleted features have some structure; for each example, a
square area covering 25% of the image surface is removed at random. The third set of experiments
considers detecting cars in images. This task presents a problem where some features are structurally
missing. For each example, regions of interests corresponding to potential car parts are detected, and
features are extracted for each region. For each image, 19 types of region are considered and between
0 and 10 instances of each region have been extracted. Each region is then described by 10 features.
This region extraction process is described in [7]. Hence, at most 1900 = 19× 10× 10 features are
provided for each image. Data statistics are summarized in Table 1.

On these datasets, Feature Set Embedding (FSE) is compared to 7 baseline models. These baselines
are all variants of Support Vector Machines (SVMs), suitable for the missing feature problem. Zero,
Mean, GMM and kNN are imputation-based strategies: Zero sets the missing values to zero, Mean
sets the missing values to the average value of the features over the training set, GMM finds the
most likely missing values given the observed ones relying on a Gaussian Mixture learned over the
training set, kNN fills the missing values of an instance based on its k-nearest-neighbors, relying on
the Euclidean distance in the subspace relevant to each pair of examples. Flag relies on the Zero
imputation but complements the examples with binary features indicating whether each feature was
observed or imputed. Finally, geom is a subspace-based strategy [4]; for each example, a classifier
in the subspace corresponding to the observed features is considered. The instance-specific margin
is maximized but the instance-specific classifiers share common weights.

For each experiment, the hyperparameters of our model l,m and the number of training iterations are
validated by first training the model on 4/5 of the training data and assessing it on the remainder of
the training data. A similar strategy has been used for selecting the baseline parameters. The SVM
kernel has notably been validated between linear and polynomial up to order 3. Test performance is
then reported over the best validated parameters.

Table 2 reports the results of our experiments. Overall, FSE performs at least as well as the best alter-
native for all experiments, except for hepatitis where all models yield almost the same performance.
In the case of structurally missing features, the car experiment shows a substantial advantage for FSE
over the second best approach geom, which was specifically introduced for this kind of setup. During
validation (no validation results are reported due to space constraints), we noted that non-linear mod-
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Table 2: Error Rate (%) for Missing Features at Train & Test Time

FSE geom zero mean flag GMM kNN
UCI sick 9 10 9 37 16 40 30

pima 34 34 34 35 35 35 41
hepatitis 23 22 22 22 22 22 23
echo 33 34 37 33 36 33 33
hypo 5 5 7 35 6 33 19

MNIST-5-vs-6 5 5 5 6 7 5 6
Cars 24 28 39 39 41 38 48

Table 3: Error rate (%) for missing features at train time only

FSE meanInput GMM meanFeat
USPS 11.7 13.6 9.0 13.2
Physics 23.8 29.2 31.2 29.6
Mines 9.8 11.7 10.5 10.6

els, i.e. the baseline SVM with a polynomial kernel of order 2 and FSE with φ = max, outperformed
their linear counterparts. We therefore solely validate non-linear FSE in the following: For feature
embedding of continuous data, feature presence information has proven to be useful in all cases, i.e.
l(a) > 0 in Eq. (3). For feature embedding of discrete data, sharing parameters across different
values of the same feature, i.e. Eq. (1), was also helpful in all cases. We also relied on sharing
parameters across different features with the same value, i.e. Eq. (2), for datasets where the feature
values shared a common meaning, i.e. gray levels for MNIST and region features for cars. For the
hyperparameters (l,m) of our model, we observed that the main control on our model capacity is
the embedding size m. Its selection is simple since varying this parameter consistently yields convex
validation curves. The rank regularizer l needed little tuning, yielding stable validation performance
for a wide range of values.

3.2 Missing Features at Train Time

The setup presenting missing features at training time is relevant to applications which rely on dif-
ferent sources for training. Each source might not collect the exact same set of features, or might
have introduced novel features during the data collection process. At test time however, the feature
detector can be designed to collect the complete feature set.

In this case, we compare our model to alternative solutions over the experimental setup introduced
in [6]. Three datasets are considered. The first set USPS considers the task of discriminating between
odd and even handwritten digits over the USPS dataset. The training set is degraded and 85% of the
features are missing. The second set considers the quantum physics data from the KDD Cup 2004 in
which two types of particles generated in high energy collider experiments should be distinguished.
Again, the training set is degraded and 85% of the features are missing. The third set considers
the problem of detecting land-mines from 4 types of sensors, each sensor provides a different set of
features or views. In this case, for each instance, whole views are considered missing during training.
Data statistics are summarized in Table 1 for the three sets.

For this set of experiments, we rely on infinite imputations as a baseline. Infinite imputation is a gen-
eral technique proposed for the case where features are missing at train time. Instead of pretraining
the distribution governing the missing values with a generative objective, infinite imputations pro-
poses to train the imputation model and the final classifier in a joint optimization framework [6]. In
this context, we consider an SVM with a RBF kernel as the classifier and three alternative imputation
models Mean, GMM and MeanFeat which corresponds to mean imputations in the feature space.
For each experiment, we follow the validation strategy defined in the previous section for FSE. The
validation strategy for tuning the parameters of the other models is described in [6].

Table 3 reports our results. FSE is the best model for the Physics and Mines dataset, and the second
best model for the USPS dataset. In this case, features are highly correlated and GMM imputation
yields a challenging baseline. On the other hand, Physics presents a challenging problem with higher
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Figure 2: Results for MNIST-miss-test (12 binary problems with features missing at test time only)

error rates for all models. In this case, feature correlation is low and GMM imputation is yielding the
worse performance, while our model brings a strong improvement.

3.3 Missing Features at Test Time

The setup presenting missing features at test time considers applications in which the training data
have been produced with more care than the test data. For example, in a face identification applica-
tion, customers could provide clean photographs for training while, at test time, the system should
be required to work in the presence of occlusions or saturated pixels.

In this case, we compare our work to [10] and [5]. Both strategies propose to learn a classifier
which avoids assigning high weight to a small subset of features, hence limiting the impact of the
deletion of some features at test time. [10] formulates their strategy as a min-max problem, i.e.
identifying the best classifier under the worst deletion, while [5] relies on an L∞ regularizer to
avoid assigning high weights to few features. We compare our algorithm to these alternatives over
binary problems discriminating handwritten digits originating from MNIST. This experimental setup
has been introduced in [10] and Table 1 summarizes its statistics. In this setup, the data is split
into training, validation and test sets. For a fair comparison, the validation set is used solely to
select hyperparameters, i.e. we do not retrain the model over both training and validation sets after
hyperparameter selection.

Since no features are missing at train time, we adapt our training procedure to take into account
the mismatched conditions between train and test. Each time an example is considered during our
stochastic training procedure, we delete a random subset of its features. The size of this subset is
sampled uniformly between 0 and the total number of features minus 1.

Figure 2 plots the error rate as a function of the number of missing features. FSE has a clear advantage
in most settings: it achieves a lower error rate than Globerson & Roweis [10] in all cases, while it
is better than Dekel & Shamir [5], as soon as the number of missing features is above 50, i.e. less
than 6% missing features. In fact, we observe that FSE is very robust to feature deletion; its error
rate remains below 20% for up to 700 missing features i.e. 90% missing features. On the other end,
the alternative strategies report performance close to random when the number of missing features
reaches 150, i.e. 20% missing features. Note that [10] and [5] further evaluate their models in an
adversarial setting, i.e. features are intentionally deleted to fool the classifier, that is beyond the scope
of this work.

3.4 MNIST-full experiments

The previous experiments compared our model to prior approaches relying on the experimental se-
tups introduced to evaluate these approaches. These setups proposed small training sets motivated by
the training cost of the compared alternatives (see Table 1). In this section, we stress the scalability
of our learning procedure and study FSE on the whole MNIST dataset with 10 classes and 60, 000
training instances. All conditions are considered: features missing at training time, at testing time,
and at both times.

We train 4 models which have access to training sets with various numbers of available features,
i.e. 100, 200, 500 and 784 features which approximately correspond to 90, 60, 35 and 0% missing
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Table 4: Error Rate (%) 10-class MNIST-full Experiments

# train f. # test features
100 300 500 784

100 19.8 8.9 7.5 6.9
300 34.2 7.4 4.8 3.9
500 55.6 12.3 4.8 2.9
784 78.3 46.7 17.8 2.5

random 10.7 2.9 2.1 1.8

features. We train a 5th model referred to as random with the algorithm introduced in Section 3.3, i.e.
all training features are available but the training procedure randomly hides some features each time
it examines an example. All models are evaluated with 100, 200, 500 and 784 available features.

Table 4 reports the results of these experiments. Excluding the random model, the result matrix is
strongly diagonal, e.g. when facing a test problem with 300 available features, the model trained with
300 features is better than the models trained with 100, 500 or 784 features. This is not surprising as
the training distribution is closer to the testing distribution in that case. We also observe that models
facing less features at test time than at train time yield poor performance, while the models trained
with few features yield satisfying performance when facing more features. This seems to suggest that
training with missing features yields more robust models as it avoids the decision function to rely
solely on few specific features that might be corrupted. In other word, training with missing features
seems to achieve a similar goal as L∞ regularization [5]. This observation is precisely what led
us to introduce the random training procedure. In this case, the model performs better than all other
models in all conditions, even when all features are present, confirming our regularization hypothesis.
In fact, the results obtained with no missing features (1.8% error) are comparable to the best non-
convolutional methods, including traditional neural networks (1.6% error) [20]. Only recent work
on Deep Boltzmann Machines [17] achieved significantly better performance (0.95% error). The
regularization effect of missing training features could be related to noise injection techniques for
regularization [21, 11].

4 Conclusions

This paper introduces Feature Set Embedding for the problem of classification with missing features.
Our approach deviates from the standard classification paradigm: instead of considering examples
as feature vectors, we consider examples as sets of (feature, value) pairs which handle the missing
feature problem more naturally. In order to classify sets, we propose a new strategy relying on two
levels of modeling. At the first level, each (feature, value) is mapped onto an embedding space. At
the second level, the set of embedded vectors is compressed onto a single embedded vector over
which linear classification is applied. Our training algorithm then relies on stochastic gradient ascent
to jointly learn the embedding space and the final linear decision function.

This proposed strategy has several advantages compared to prior work. First, sets are conceptually
better suited than vectors for dealing with missing values. Second, embedding (feature, value) pairs
offers a flexible framework which easily allows encoding prior knowledge about the features. Third,
our experiments demonstrate the effectiveness and the scalability of our approach.

From a broader perspective, the flexible feature embedding framework could go beyond the missing
feature application. In particular, it allows using meta-features (attributes describing a feature) [13],
e.g. the embedding vector of the temperature features in a weather prediction system could be com-
puted from the locations of their sensors. It also enables the designing of a system in which new
sensors are added without requiring full model re-training; in this case, the model could be quickly
adapted by only updating embedding vectors corresponding to the new sensors. Also, our approach
of relying on feature sets offers interesting opportunities for feature selection and adversarial feature
deletion. We plan to study these aspects in the future.

Acknowledgments The authors are grateful to Gal Chechik and Uwe Dick for sharing their data
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