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Introduction

sparsity recovery: how to recover a “suitably sparse” signal 5*

from noisy observations?

broad range of applications:
— subset selection in regression
— signal denoising and constructive approximation

— graphical model selection
natural optimization-theoretic formulation via £y “norm”:

18%llo = card{i | 5i #0}.

{9 problems NP-hard in general = need for computationally

tractable relaxations




Subset selection in regression

consider the standard linear regression model
yr = T 07 4wy

e (xk,yr) are observed data
where e  observation noise wy ~ N(0,0?)

e [3* € RP is the regression vector

vector x € RP may include a large number of irrelevant variables

(e.g., bioinformatics, sparse representations in signal processing)

subset selection: how to choose the relevant subset S of indices

for 3*7




Illustration: Reconstruction in overcomplete bases
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Graphical model selection

given samples z¥ = [zF 25 ... z]’;] of an m-dimensional

random vector
say that we want to fit a Markov random field to this data
there are p = (Tg) possible edges to include/exclude

graphical model selection: how to choose the appropriate
subset S of edges to include?

classical model selection criteria (AIC, BIC): typically involve some

form of £y “norm” penalty




Sparsity recovery with /; relaxations

Noiseless setting: Linear programming (Chen et al., 1998)
Given perfect observations y, = xfﬁ* fork=1,...,n.
¢y problem (Lg) ¢ relaxation (L)
min [} s 1Ak
s.t. x%ﬁ:yk, k=1,....n s.t. xfﬁ:yk, k=1,....n
Noisy setting: Quadratic programming (Tibshirani, 1996)

Given noisy observations y, = zi 3* + wg where wy, ~ N(0,0?).

¢y problem (Qg) 1 relaxation (Q1)
. T ~\2 . T 2\2
min I;(yk—xw) + AllBllo min Zjl(yk—xkﬂ) + A8l




Partial overview of previous work

pioneering work on basis pursuit (relaxation L)
(Chen, Donoho & Saunders, 1998)

characterization of success for basis pursuit
(e.g., Candes/Tao, Donoho, Elad, Goyal, Tropp ....)

use/analysis of ¢1-constrained quadratic programming (Lasso)
(e.g., Tibshirani, 1996; Knight & Fu, 2000...)

use of Lasso for Gaussian graphical model selection
(Meinshausen & Buhlmann, 2005; Zhao & Yu, 2006)

noiseless setting: analysis of random Gaussian ensembles (Candes &
Tao, 2005; Donoho, 2005)




Problem formulation

e civen fixed but unknown vector 8* € RP, define its support set

S={ie{l,....p} | 57 #0}
and s = |5].

e hence p is the ambient dimension of the problem (typically p > s)

e given n observations of the form

Y = :L{ﬁ* + wg

Question: For which sequences (n,p(n),s(n)) is it

possible/impossible to recover the support set S using the

Lasso?




Assumptions on random Gaussian ensembles

e vector observation Y = X (3* + W with random design matrix

X: . y :EkNN(O,Z)

1. Dependency condition: There exist constants C,,;, > 0 and
Crae < 00 such that the min./max. eigenvalues satisfy

sz'n S Amin(ZSS)a and Amax(ZSS) S Cma,x-

2. Mutual incoherence: There exists an § € (0, 1] such that

Yges(Xss) Moo < 106




Illustrative examples

1. Uniform Gaussian ensemble Y. = [.

2. Toeplitz ensembles ¥ = toep {1 uwopro ,up—l].

_1

3. Bounded correlation models |X;;| < 5.

4. Diagonally dominant matrices

Key remark: Depending on n and p, the random matrix X? X can

have eigenvalues far away from those of ..
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Covariance Y. versus random matrix
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Thresholds for linear regression

Consider the sparse linear regression model
ye = a0+ wk, k=1,...,n
e [(*€R”and |G| =s.
where e observation noise wi ~ N(0,07)

e random design vectors xx ~ N(0,X)

n = Of(slog(p—s)+s+1).

n — +o0.

P[Success| — 0 as n — 4o0.

Theorem: Successful recovery with the Lasso has threshold

I.e., there are constants 6, < 1 < 6, such that for all ¢ > 0:
(a) if n > 2(0, +¢€)slog(p—s)+ s+ 1, then P[Success] — 1 as

(a) conversely, if n < 2(0; — €¢)slog(p — s) + s + 1, then
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Some corollaries

Linear underdetermined scaling:

e suppose that n = Bp for some § € (0,1). Then w.h.p the Lasso

recovers any sparsity pattern with s = O(55)-

e sharp contrast with earlier results in the noiseless setting, where

s = «yp can be recovered (Donoho, 2005; Candes & Tao, 2005)

Exponential scaling: (Meinshausen & Buhlmann, Zhao & Yu, 2006)
Suppose that

s = 0(n) and  p= O (exp(n®))

where c; + co < 1. Then the Lasso recovers w.h.p. in recovering the
sparsity pattern.
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Illustration: Toeplitz GGaussian ensemble
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Graphical model selection

given an unknown graph G = (V, E), consider the Markov random

field

p(z:8) o exp{ > Bezsz

(s,t)EE
conditioned on (z9,..., 2y ), the variable Z; has distribution
1
p1(z;8) = P(Z1=1] 22,...,2m) = .
1 + eXp ( Z 51tzt>
teN (1)

Strategy: perform logistic regression of node Z; on the rest to
determine neighborhood structure A/(1)

perform analogous regressions to determine neighborhood
structures N (7),i € V for the full graph
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Method and notation

Method: Given samples (27, 25,...,25):

m

1. For each node 7 € V', perform ¢; regularized logistic regression of z;

on the remaining variables z\;:

B = argmin s [log (144 2k) 2 () -] + Al

2. Estimate the local neighborhood A/ (i) as the support (non-negative
entries) of the regression vector (3°.

Notation:

e define Fisher information matrix (at node ):

Qi = E[pi(Z:8) 1—pi(Z2:8)22"].

e focusing on a fixed node 7, let Q5 ¢ denote the submatrix associated
with the support of NV (4).
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Assumptions

Dependency condition: There exist constants C),,;, > 0 and
Cinar < +00 such that

sz'n S Amin(QgS)a a,nd Ama:B(QgS) S Cmaac-

Incoherence There exists an § € (0, 1] such that

1Q5e5(Qbs) Mo < 1-06.

Growth rates: The growth rates of the number of observations n, the

graph size p, and the maximum node degree d,,,x satisty

n

a2

max

— 6dmax l0g(dmax) — 2log(p) — Ho0.
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Model selection via regression

Method: Given samples (2F,25,...,2%):

1. For each node 7 € V', perform ¢; regularized logistic regression of Z;
on the remaining variables.

2. Estimate the local neighborhood

N (7) as the support (non-negative entries) of the regression vector.

3. Combine the neighborhood estimates in a consistent manner
(AND, or OR rule).

Theorem Suppose that the triple (n, p, dmax) and the regularization
parameter \,, satisfy the conditions:

(a) nA2 — 2log(p) — +oo, and (b) dpaxAn, — 0.
Then P[N,, (i) = N(3), Vie V,] — 1 as n — +oo.
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Summary and future directions

e for /i-regularized linear regression, established sharp thresholds for

sparsity recovery

identity ensemble: results are sharp
o

more general ensembles: results can be sharpened

e established sufficient conditions for consistent model selection via

logistic regression
Open questions:

e methods can be extended to more general families of graphical
models

e can mutual incoherence be eliminated /weakened?

e what are fundamental information-theoretic limits of recovery?
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