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Introduction

• sparsity recovery: how to recover a “suitably sparse” signal β∗

from noisy observations?

• broad range of applications:

– subset selection in regression

– signal denoising and constructive approximation

– graphical model selection

• natural optimization-theoretic formulation via `0 “norm”:

‖β∗‖0 := card {i | β∗
i 6= 0} .

• `0 problems NP-hard in general =⇒ need for computationally

tractable relaxations
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Subset selection in regression

• consider the standard linear regression model

yk = xT
k β∗ + wk

where

• (xk, yk) are observed data

• observation noise wk ∼ N(0, σ2)

• β∗ ∈ R
p is the regression vector

• vector x ∈ R
p may include a large number of irrelevant variables

(e.g., bioinformatics, sparse representations in signal processing)

• subset selection: how to choose the relevant subset S of indices

for β∗?
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Illustration: Reconstruction in overcomplete bases
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Graphical model selection

• given samples zk =
[
zk
1 zk

2 · · · zk
p

]
of an m-dimensional

random vector

• say that we want to fit a Markov random field to this data

• there are p =
(
m
2

)
possible edges to include/exclude

• graphical model selection: how to choose the appropriate

subset S of edges to include?

• classical model selection criteria (AIC, BIC): typically involve some

form of `0 “norm” penalty
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Sparsity recovery with `1 relaxations

Noiseless setting: Linear programming (Chen et al., 1998)

Given perfect observations yk = xT
k β∗ for k = 1, . . . , n.

`0 problem (L0)

min
β∈Rp

‖β‖0

s.t. xT
k β = yk, k = 1, . . . , n

`1 relaxation (L1)

min
β∈Rp

‖β‖1

s.t. xT
k β = yk, k = 1, . . . , n

Noisy setting: Quadratic programming (Tibshirani, 1996)

Given noisy observations yk = xT
k β∗ + wk where wk ∼ N(0, σ2).

`0 problem (Q0)

min
β∈Rp

n∑

k=1

(yk − xT
k β)2 + λ‖β‖0

`1 relaxation (Q1)

min
β∈Rp

n∑

k=1

(yk − xT
k β)2 + λ‖β‖1
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Partial overview of previous work

• pioneering work on basis pursuit (relaxation L1)

(Chen, Donoho & Saunders, 1998)

• characterization of success for basis pursuit

(e.g., Candes/Tao, Donoho, Elad, Goyal, Tropp ....)

• use/analysis of `1-constrained quadratic programming (Lasso)

(e.g., Tibshirani, 1996; Knight & Fu, 2000...)

• use of Lasso for Gaussian graphical model selection

(Meinshausen & Buhlmann, 2005; Zhao & Yu, 2006)

• noiseless setting: analysis of random Gaussian ensembles (Candes &

Tao, 2005; Donoho, 2005)
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Problem formulation

• given fixed but unknown vector β∗ ∈ R
p, define its support set

S = {i ∈ {1, . . . , p} | β∗
i 6= 0}

and s = |S|.

• hence p is the ambient dimension of the problem (typically p À s)

• given n observations of the form

yk = xT
k β∗ + wk

Question: For which sequences (n, p(n), s(n)) is it

possible/impossible to recover the support set S using the

Lasso?
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Assumptions on random Gaussian ensembles

• vector observation Y = Xβ∗ + W with random design matrix

X =




xT
1

xT
2

...

xT
n




, xk ∼ N(0, Σ)

1. Dependency condition: There exist constants Cmin > 0 and

Cmax < +∞ such that the min./max. eigenvalues satisfy

Cmin ≤ Λmin(ΣSS), and Λmax(ΣSS) ≤ Cmax.

2. Mutual incoherence: There exists an δ ∈ (0, 1] such that

‖ΣScS(ΣSS)−1‖∞ ≤ 1 − δ.
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Illustrative examples

1. Uniform Gaussian ensemble Σ = I.

2. Toeplitz ensembles Σ = toep
[
1 µ µ2 · · · µp−1

]
.

3. Bounded correlation models |Σij | ≤
1

2s−1 .

4. Diagonally dominant matrices

Key remark: Depending on n and p, the random matrix XT X can

have eigenvalues far away from those of Σ.

10



Covariance Σ versus random matrix
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Thresholds for linear regression

Consider the sparse linear regression model

yk = x
T
k β

∗ + wk, k = 1, . . . , n

where

• β∗ ∈ R
p and ‖β∗‖0 = s.

• observation noise wk ∼ N(0, σ2)

• random design vectors xk ∼ N(0, Σ)

Theorem: Successful recovery with the Lasso has threshold

n = Θ (s log(p − s) + s + 1) .

I.e., there are constants θ` ≤ 1 ≤ θu such that for all ε > 0:

(a) if n > 2 (θu + ε) s log(p − s) + s + 1, then P[Success] → 1 as

n → +∞.

(a) conversely, if n < 2 (θ` − ε) s log(p − s) + s + 1, then

P[Success] → 0 as n → +∞.
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Some corollaries

Linear underdetermined scaling:

• suppose that n = βp for some β ∈ (0, 1). Then w.h.p the Lasso

recovers any sparsity pattern with s = O( p
log p

).

• sharp contrast with earlier results in the noiseless setting, where

s = γp can be recovered (Donoho, 2005; Candes & Tao, 2005)

Exponential scaling: (Meinshausen & Buhlmann, Zhao & Yu, 2006)

Suppose that

s = O(nc1) and p = O (exp(nc2))

where c1 + c2 < 1. Then the Lasso recovers w.h.p. in recovering the

sparsity pattern.
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Illustration: Uniform Gaussian ensemble
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Illustration: Toeplitz Gaussian ensemble
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Graphical model selection

• given an unknown graph G = (V, E), consider the Markov random

field

p(z; β) ∝ exp




∑

(s,t)∈E

βstzszt



 .

• conditioned on (z2, . . . , zm), the variable Z1 has distribution

p1(z; β) := P(Z1 = 1 | z2, . . . , zm) =
1

1 + exp

(
∑

t∈N (1)

β1tzt

) .

• Strategy: perform logistic regression of node Z1 on the rest to

determine neighborhood structure N (1)

• perform analogous regressions to determine neighborhood

structures N (i), i ∈ V for the full graph
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Method and notation

Method: Given samples (zk
1 , zk

2 , . . . , zk
m):

1. For each node i ∈ V , perform `1 regularized logistic regression of zi

on the remaining variables z\i:

β̂i := arg min
β

1

n

n∑

k=1

[
log
(
1 + βi · zk

\i

)
− zk

i

(
zk
\i

)
· βi
]

+ λn‖β
i‖1.

2. Estimate the local neighborhood N̂ (i) as the support (non-negative

entries) of the regression vector β̂i.

Notation:

• define Fisher information matrix (at node i):

Q∗
i = E

[
pi(Z; β) (1 − pi(Z; β) ZZT

]
.

• focusing on a fixed node i, let Q∗
SS denote the submatrix associated

with the support of N (i).
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Assumptions

Dependency condition: There exist constants Cmin > 0 and

Cmax < +∞ such that

Cmin ≤ Λmin(Q∗
SS), and Λmax(Q∗

SS) ≤ Cmax.

Incoherence There exists an δ ∈ (0, 1] such that

‖Q∗
ScS(Q∗

SS)−1‖∞ ≤ 1 − δ.

Growth rates: The growth rates of the number of observations n, the

graph size p, and the maximum node degree dmax satisfy

n

d5
max

− 6dmax log(dmax) − 2 log(p) → +∞.
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Model selection via regression

Method: Given samples (zk
1 , zk

2 , . . . , zk
m):

1. For each node i ∈ V , perform `1 regularized logistic regression of Zi

on the remaining variables.

2. Estimate the local neighborhood

N̂ (i) as the support (non-negative entries) of the regression vector.

3. Combine the neighborhood estimates in a consistent manner

(AND, or OR rule).

Theorem Suppose that the triple (n, p, dmax) and the regularization

parameter λn satisfy the conditions:

(a) nλ2
n − 2 log(p) → +∞, and (b) dmaxλn → 0.

Then P[ N̂n(i) = N (i), ∀ i ∈ Vn] → 1 as n → +∞.
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Summary and future directions

• for `1-regularized linear regression, established sharp thresholds for

sparsity recovery

•
identity ensemble: results are sharp

more general ensembles: results can be sharpened

• established sufficient conditions for consistent model selection via

logistic regression

Open questions:

• methods can be extended to more general families of graphical

models

• can mutual incoherence be eliminated/weakened?

• what are fundamental information-theoretic limits of recovery?
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