ℓ_1 regularization in the high-dimensional setting: Thresholds for sparsity recovery and model selection

Martin Wainwright

Department of Electrical Engineering and Computer Science

Department of Statistics

UC Berkeley, California, USA

wainwrig@{stat,eecs}.berkeley.edu

Graph model selection based on joint work with:

John Lafferty Carnegie Mellon University, USA

Pradeep Ravikumar Carnegie Mellon University, USA

Introduction

- sparsity recovery: how to recover a "suitably sparse" signal β^* from noisy observations?
- broad range of applications:
 - subset selection in regression
 - signal denoising and constructive approximation
 - graphical model selection
- natural optimization-theoretic formulation via ℓ_0 "norm":

$$\|\beta^*\|_0 := \operatorname{card}\{i \mid \beta_i^* \neq 0\}.$$

• ℓ_0 problems NP-hard in general \Longrightarrow need for computationally tractable relaxations

Subset selection in regression

• consider the standard linear regression model

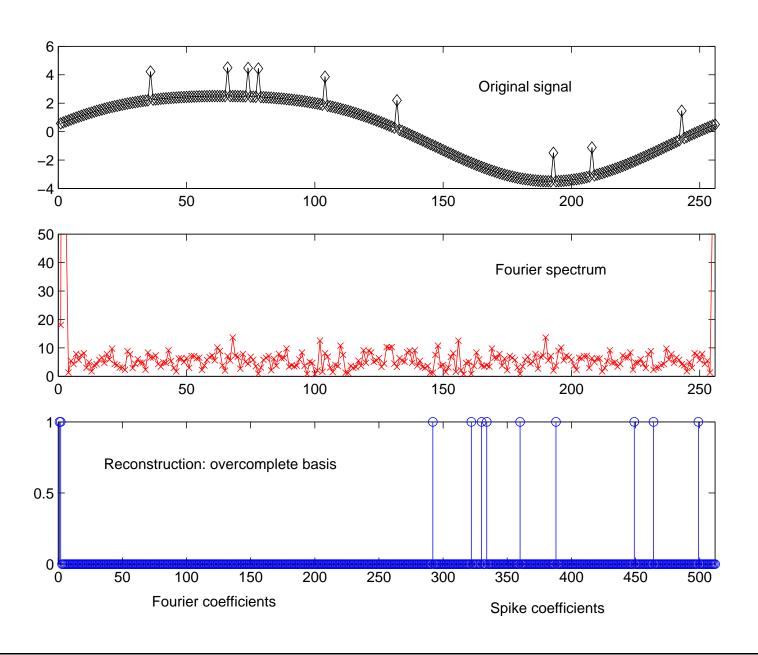
$$y_k = x_k^T \beta^* + w_k$$

• (x_k, y_k) are observed data

where • observation noise $w_k \sim N(0, \sigma^2)$

- $\beta^* \in \mathbb{R}^p$ is the regression vector
- vector $x \in \mathbb{R}^p$ may include a large number of irrelevant variables (e.g., bioinformatics, sparse representations in signal processing)
- subset selection: how to choose the relevant subset S of indices for β^* ?

Illustration: Reconstruction in overcomplete bases



Graphical model selection

- given samples $z^k = \begin{bmatrix} z_1^k & z_2^k & \cdots & z_p^k \end{bmatrix}$ of an m-dimensional random vector
- say that we want to fit a Markov random field to this data
- there are $p = {m \choose 2}$ possible edges to include/exclude
- graphical model selection: how to choose the appropriate subset S of edges to include?
- classical model selection criteria (AIC, BIC): typically involve some form of ℓ_0 "norm" penalty

Sparsity recovery with ℓ_1 relaxations

Noiseless setting: Linear programming

(Chen et al., 1998)

Given perfect observations $y_k = x_k^T \beta^*$ for k = 1, ..., n.

$$\ell_0$$
 problem (L_0)

$$\ell_1$$
 relaxation (L_1)

$$\min_{\beta \in \mathbb{R}^p} \qquad \|\beta\|_0$$

$$\min_{\beta \in \mathbb{R}^p} \quad \|\beta\|_1$$

s.t.
$$x_k^T \beta = y_k, \quad k = 1, \dots, n$$

s.t.
$$x_k^T \beta = y_k, \quad k = 1, ..., n$$

Noisy setting: Quadratic programming

(Tibshirani, 1996)

Given noisy observations $y_k = x_k^T \beta^* + w_k$ where $w_k \sim N(0, \sigma^2)$.

$$\ell_0$$
 problem (Q_0)

$$\ell_1$$
 relaxation (Q_1)

$$\min_{\beta \in \mathbb{R}^p} \sum_{k=1}^{n} (y_k - x_k^T \beta)^2 + \lambda \|\beta\|_0 \qquad \min_{\beta \in \mathbb{R}^p} \sum_{k=1}^{n} (y_k - x_k^T \beta)^2 + \lambda \|\beta\|_1$$

Partial overview of previous work

- pioneering work on basis pursuit (relaxation L_1) (Chen, Donoho & Saunders, 1998)
- characterization of success for basis pursuit (e.g., Candes/Tao, Donoho, Elad, Goyal, Tropp)
- use/analysis of ℓ_1 -constrained quadratic programming (Lasso) (e.g., Tibshirani, 1996; Knight & Fu, 2000...)
- use of Lasso for Gaussian graphical model selection (Meinshausen & Buhlmann, 2005; Zhao & Yu, 2006)
- noiseless setting: analysis of random Gaussian ensembles (Candes & Tao, 2005; Donoho, 2005)

Problem formulation

• given fixed but unknown vector $\beta^* \in \mathbb{R}^p$, define its support set

$$S = \{i \in \{1, \dots, p\} \mid \beta_i^* \neq 0\}$$

and s = |S|.

- hence p is the ambient dimension of the problem (typically $p \gg s$)
- \bullet given *n* observations of the form

$$y_k = x_k^T \beta^* + w_k$$

Question: For which sequences (n, p(n), s(n)) is it possible/impossible to recover the support set S using the Lasso?

Assumptions on random Gaussian ensembles

• vector observation $Y = X\beta^* + W$ with random design matrix

$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}, \qquad x_k \sim N(0, \Sigma)$$

1. **Dependency condition:** There exist constants $C_{min} > 0$ and $C_{max} < +\infty$ such that the min./max. eigenvalues satisfy

$$C_{min} \leq \Lambda_{min}(\Sigma_{SS}), \quad and \quad \Lambda_{max}(\Sigma_{SS}) \leq C_{max}.$$

2. Mutual incoherence: There exists an $\delta \in (0,1]$ such that

$$\|\Sigma_{S^c S}(\Sigma_{SS})^{-1}\|_{\infty} \leq 1 - \delta.$$

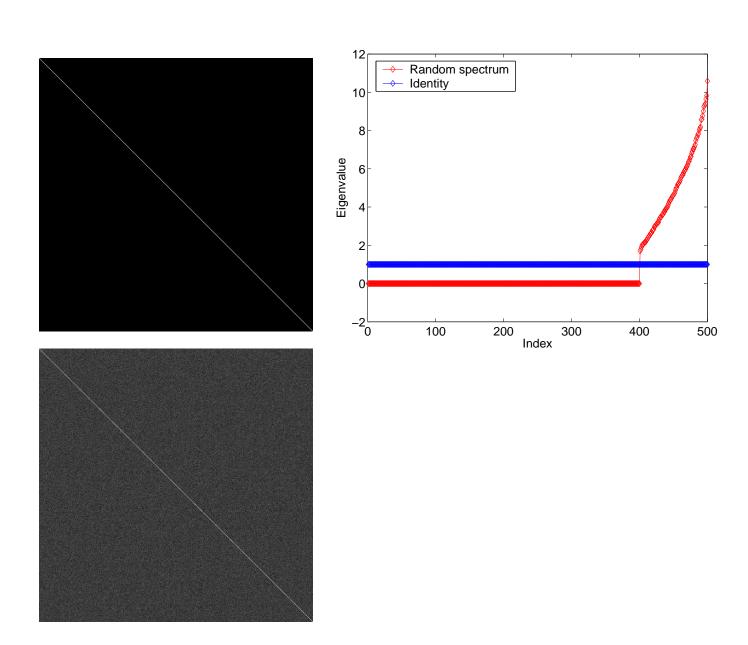
Illustrative examples

1. Uniform Gaussian ensemble $\Sigma = I$.

- 2. Toeplitz ensembles $\Sigma = \text{toep} \begin{bmatrix} 1 & \mu & \mu^2 & \cdots & \mu^{p-1} \end{bmatrix}$.
- 3. Bounded correlation models $|\Sigma_{ij}| \leq \frac{1}{2s-1}$.
- 4. Diagonally dominant matrices

Key remark: Depending on n and p, the random matrix X^TX can have eigenvalues far away from those of Σ .

Covariance Σ versus random matrix



Thresholds for linear regression

Consider the sparse linear regression model

$$y_k = x_k^T \beta^* + w_k, \qquad k = 1, \dots, n$$

• $\beta^* \in \mathbb{R}^p$ and $\|\beta^*\|_0 = s$.

where

- observation noise $w_k \sim N(0, \sigma^2)$
- random design vectors $x_k \sim N(0, \Sigma)$

Theorem: Successful recovery with the Lasso has threshold

$$n = \Theta(s \log(p - s) + s + 1).$$

I.e., there are constants $\theta_{\ell} \leq 1 \leq \theta_{u}$ such that for all $\epsilon > 0$:

- (a) if $n > 2(\theta_u + \epsilon) s \log(p s) + s + 1$, then $\mathbb{P}[Success] \to 1$ as $n \to +\infty$.
- (a) conversely, if $n < 2(\theta_{\ell} \epsilon) s \log(p s) + s + 1$, then $\mathbb{P}[\text{Success}] \to 0 \text{ as } n \to +\infty$.

Some corollaries

Linear underdetermined scaling:

- suppose that $n = \beta p$ for some $\beta \in (0, 1)$. Then w.h.p the Lasso recovers any sparsity pattern with $s = O(\frac{p}{\log p})$.
- sharp contrast with earlier results in the *noiseless setting*, where $s = \gamma p$ can be recovered (Donoho, 2005; Candes & Tao, 2005)

Exponential scaling: (Meinshausen & Buhlmann, Zhao & Yu, 2006)

Suppose that

$$s = O(n^{c_1})$$
 and $p = O(\exp(n^{c_2}))$

where $c_1 + c_2 < 1$. Then the Lasso recovers w.h.p. in recovering the sparsity pattern.

Illustration: Uniform Gaussian ensemble

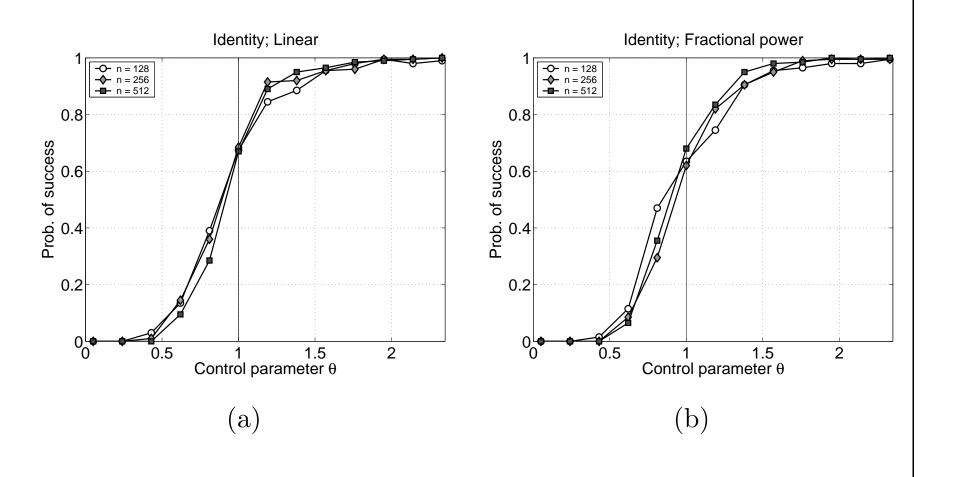
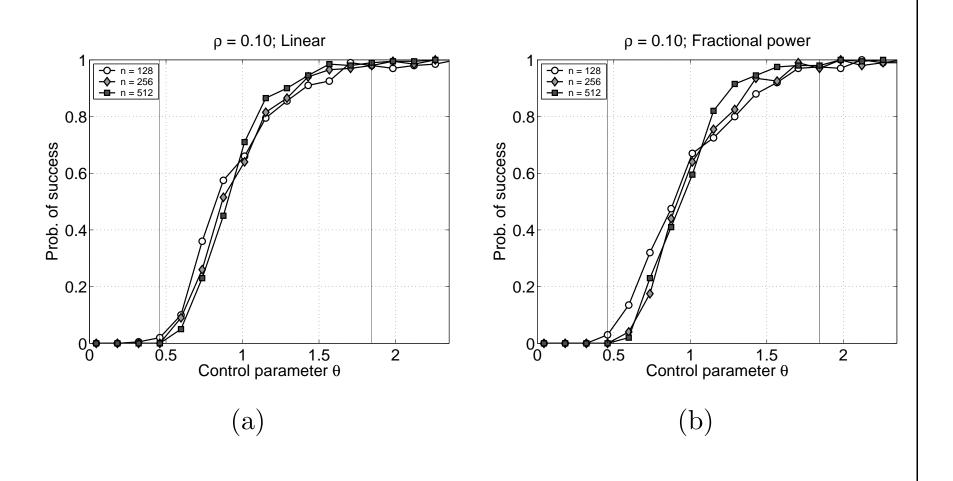


Illustration: Toeplitz Gaussian ensemble



Graphical model selection

• given an unknown graph G = (V, E), consider the Markov random field

$$p(z;\beta) \propto \exp \left\{ \sum_{(s,t)\in E} \beta_{st} z_s z_t \right\}.$$

• conditioned on (z_2, \ldots, z_m) , the variable Z_1 has distribution

$$p_1(z;\beta) := \mathbb{P}(Z_1 = 1 \mid z_2, \dots, z_m) = \frac{1}{1 + \exp\left(\sum_{\mathbf{t} \in \mathcal{N}(\mathbf{1})} \beta_{1t} z_t\right)}.$$

- Strategy: perform logistic regression of node Z_1 on the rest to determine neighborhood structure $\mathcal{N}(1)$
- perform analogous regressions to determine neighborhood structures $\mathcal{N}(i), i \in V$ for the full graph

Method and notation

Method: Given samples $(z_1^k, z_2^k, \dots, z_m^k)$:

1. For each node $i \in V$, perform ℓ_1 regularized logistic regression of z_i on the remaining variables $z_{\setminus i}$:

$$\widehat{\beta}^i := \arg\min_{\beta} \frac{1}{n} \sum_{k=1}^n \left[\log \left(1 + \beta^i \cdot z_{\backslash i}^k \right) - z_i^k \left(z_{\backslash i}^k \right) \cdot \beta^i \right] + \lambda_n \|\beta^i\|_1.$$

2. Estimate the local neighborhood $\widehat{\mathcal{N}}(i)$ as the support (non-negative entries) of the regression vector $\widehat{\beta}^i$.

Notation:

• define Fisher information matrix (at node i):

$$Q_i^* = \mathbb{E}\left[p_i(Z;\beta) \left(1 - p_i(Z;\beta) ZZ^T\right]\right].$$

• focusing on a fixed node i, let Q_{SS}^* denote the submatrix associated with the support of $\mathcal{N}(i)$.

Assumptions

Dependency condition: There exist constants $C_{min} > 0$ and

$$C_{max} < +\infty$$
 such that

$$C_{min} \leq \Lambda_{min}(Q_{SS}^*), \quad and \quad \Lambda_{max}(Q_{SS}^*) \leq C_{max}.$$

Incoherence There exists an $\delta \in (0,1]$ such that

$$||Q_{S^cS}^*(Q_{SS}^*)^{-1}||_{\infty} \le 1 - \delta.$$

Growth rates: The growth rates of the number of observations n, the graph size p, and the maximum node degree d_{max} satisfy

$$\frac{n}{d_{\max}^5} - 6d_{\max} \log(d_{\max}) - 2\log(p) \rightarrow +\infty.$$

Model selection via regression

Method: Given samples $(z_1^k, z_2^k, \dots, z_m^k)$:

- 1. For each node $i \in V$, perform ℓ_1 regularized logistic regression of Z_i on the remaining variables.
- 2. Estimate the local neighborhood $\widehat{\mathcal{N}}(i)$ as the support (non-negative entries) of the regression vector.
- 3. Combine the neighborhood estimates in a consistent manner (AND, or OR rule).

Theorem Suppose that the triple (n, p, d_{max}) and the regularization parameter λ_n satisfy the conditions:

(a)
$$n\lambda_n^2 - 2\log(p) \to +\infty$$
, and (b) $d_{\max}\lambda_n \to 0$.

Then
$$\mathbb{P}[\hat{\mathcal{N}}_n(i) = \mathcal{N}(i), \ \forall i \in V_n] \to 1 \text{ as } n \to +\infty.$$

Summary and future directions

• for ℓ_1 -regularized linear regression, established sharp thresholds for sparsity recovery

identity ensemble: results are sharp

more general ensembles: results can be sharpened

• established sufficient conditions for consistent model selection via logistic regression

Open questions:

- methods can be extended to more general families of graphical models
- can mutual incoherence be eliminated/weakened?
- what are fundamental information-theoretic limits of recovery?