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Working notion of semantic search

= Exploiting in conjunction
* “Strings with meaning” — entities and relations
* “Uninterpreted strings” — as in IR

= “Is-a” and other relations
= Proximity
= Conductance

= Can approximate
many info needs

= “Warehousing”
not enough

Type-annotated corpus and query e.g.

Name a physicist who searched _
for intelligent life in the cosmos

- type=physicist NEAR “cosmos”...

is-a

region -

g
’
/
/

person

€ scieptist )
( éhiﬁicist )

Where was Sagan born?
- type=region NEAR “Sagan”

’

When was Sagan born?
- type=time
pattern=isDDDD NEAR
“Sagan” “born”
_hasDigit > ( isDDDD ) ;e
Born in New Yorklin [1934/,|Saganiwas
a noted astronomerwhﬁse”mﬁéng passion

was searching for intelligent life in the cosmos.
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The query class we address

* Find a token span w (in context) such that

wis a mention of entity e

 “Carl Sagan” or “Sagan” is a mention of the concept of
that specific physicist

e is an instance of atype a given in the query
« Which a=physicist ...

wis “NEAR” a set of strings
* “searched”, “intelligent”, “life”, “cosmos”

= All uncertain/imprecise; we focus on #3

= Yet surprisingly powerful: correct answer
within top 3—4 w's for TREC QA benchmark

Contribution 1: What is “NEAR”?

= XQuery and XPath full text support

(distance at most|window) 10 words [ordered] —
hard proximity clause, not learnt

ftcontains ... with thesaurus at ... relationship
"narrower terms" at most ¢ levels

= No implementation combining “narrower
terms” and “soft” proximity ranking

= Search engines favor proximity in proprietary
ways
—Z@Z—A learning framework for graph proximity




Contribution 2: Indexing annotations

= type=person NEAR theory relativity - type in
{physicist, politician, cricketer,...} NEAR
theory relativity
- Large fanout at query time, impractical

= Complex annotation indexes tend to be large
+ Binding Engine (WWW 2005): 10x index size
blowup with only a handful of entity types
» Qur target: 18000 atypes today, more later
—Z@Z—Workload-driven index and query
optimization
- Exploit skew in query atype workload

Part 1: Scoring and Ranking
Nodes in Graphs




Two flavors of ranking problems

= The restricted query class we just discussed
+ 0/1 type membership via “perfect” taxonomy

- NEAR captured via token rareness and distance
between match tokens and candidate token

= General typed entity-relationship (ER) graph

» Typed edges and nodes with text

- Random walk biased by [ |

« Query matching node text works-for

« Semantics of edge types

- Learn walk parameters, wrote </ received
don’t guess them

cited in-reply-to

Learning to score token spans

= type=person NEAR “ielevision” “invent™

o Rgrlty of selectors @ cose

= Distance from stem ‘“invent”  stem :
candidate position Looen, e

to selectors
= Many occurrences

N
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of one selector T T T TEET

- Closest is good ) L Lol

. © = 8 C =

= Combining scores 2 & 2z 8

from many selectors
« Sum is good

—John Baird—O*-é- S

Candidate position to score
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Selectors




Learning the shape of the decay function

= For simplicity assume left-right symmetry
= Parameters (B,,...,py), W=max gap window

= Candidate position characterized by a
feature vector f= (f[1],...,f[W])
If there is a matched selector s at distance j and
This is the closest occurrence of s
Then set f[j] to energy(s), ... else O
= Score of candidate position is B-f

= |f we like candidate u less than v (“u < v’
We want B-f, < -,
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Ranking feature vectors

= “Hard margin” version

min f'f subject to 5'f; - p'f; < —1foralli < j
PeR

Regularizer Slack variable

= “Soft margin” version \/

min S'S+ BZS,-/- subjectto 5'f; — f'f; <-1+s; foralli < j
BeR? 520

i<
= Quadratic program, slow (watch KDD 2006)
= By eliminating slack vars, can be rewritten as

min ' f+B) max{01+ f'f, - 5'f;}
:gji_/\

BeR?

Approximate with a smooth function




Benign loss functions for scoring
= Replace hinge with

min 85+ BY | smoothLoss {01+ £, ~ 5'f;}
peR® i-<ji

= Differentiable everywhere,

use Newton’s method 7
- Minutes instead of hours CoaE 4 /
. —LO X
= Can shift and scale B - - -Hir?gep
without changing rank Eg;’ef
= Can set B,,,=0 and
discourage adjacent 3's
from differing too much '
= Force monotonicdecrease " T 0T
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Learning decay function—results
m[)@nZ(ﬂj ~ Bj11)? +B)_smoothLoss (S - f, —5-1,)
j=1

u=<v

Discourage adjacent s Penalize violations of
from differing a lot preference order
IR Baseline
1 f\l Train Test MRR
08 \/ IR 2000 0.16
5 0° TREC 2001 2000 0.29

“ 0.2 1 VW\/\I\\W\_/\ year
0 - ‘ ‘ ‘ \

10 20 30 40 50 Mean reciprocal rank: Average

Gap | over questions, reciprocal of

Roughly unimodal the first rank where an answer
aroundgap=4and5 token was found (large goocﬂ




Searching personal information networks
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Ranking nodes in ER graphs
= Nodes have entity types: Person, Paper,
Email, Company
= Edges have relation types: wrote, sent, cited,
in-reply-to; edge e has type f(le)e{1,... T}

= Edge i-j of type t has weight B(f) and
conductance C(i=))...

Probability

of following

blue edge

out of /is

2/(2+3+3)

Teleport? ‘ p=3 cited in-reply-to .

Edge conductance
Dead-end Ordinary walk step
0, 7/ i #d,j#d, i leaf(V)
B(t(1.7 . - :

QZ“}“;)})) i#d,j+didleaf(V)

CGii) = 1, i #d,j=d,1 € leaf (V)

|1- o, i #d,j=d,i ¢ leaf(V)

r; 1 =d,j #d

Teleport from dummy

) Teleport from ordinar
node to ordinary nodes P J

nodes to dummy node
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Constrained design of conductance

= Hard constraints = Most parsimonious
Scaling all B preserves p, so model?
we can demand all B(t)>1 All B(f)=1
ModelCost(3) = Zt( B(t)—1)?
odelCost(/5)
Bz All B(1) equal:
subject to ; ModelGost(8) = > (A(t)-A(t))?

C(h)p
. No margin!? —Because an
forall 7 <
jrora / < arbitrary margin (say 1)
may never be attainable by
deviating from the

Must break this recurrence pars.imonious. model and
between p and p to solve directly | scaling B (unlike RankSVM)
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Breaking the p=Cp recurrence
= Pagerank is usually approximated by the
Power Method: p = C"p° where

His a large enough horizon to give convergence

pCis an initial distribution over nodes, usually
uniform

= Compute alongside Pagerank (chain rule):
)
: —(C"p"); =0 for all t and i,

()7)1-
Ch 0 Cli Ch1 0
and for h=1,..., H: Z N )

() 2 (;)(Y(‘}“ J) vyh — ] ] Y/ - - 11— ]
55, C"P) —Z[ g (CM ")+ Ol )5 (CM P
J




Setting up the optimization
= Objective

min Y (8()- (¢ + BY huber(C™6°); - (C"6%),)

t=t' i<j
= Gradient of the loss part
H 0 HAO0y
Zhuber'((CHp ), —(CM"p ),)(a(c p’); 9C7p ),J

1 9Bt (1)

= Polynomial ratios and products—surface not
monotonic or unimodal, need some grid
search

<]
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The effect of a limited horizon

= Gradients also 0 1o"er2on U 30
converge, residuals = 1.E04
decrease exponentially § =%/

* Not surprising 5 1E07
S {.E-08 -
« Can perhaps prove TAE09 | [ —— GradWrBetal b,  Bh
anp PSP g 1 E10 T Gradwribet? | e e
glven some —— GradWrtBeta3 -
. 1.E-11 »— GradWrtBeta5
assumptions
' 30
= As Hincreases

—&—test error
- More CPU time needed —B- iterations
- Gradient is more
accurate, low test error
- Fewer Newton iterations 5 -

needed 0

\ \ <& <& 4
8 10 12 14 horizon
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Appropriateness of loss approximation

Less reliable than true
error (as usual)

Hinge loss is even
worse than Huber

“In practice”...

* [ optimization never
seems to get trapped in
local minima

* o optimization is started
from a 0:0.1:1 grid
Need better
understanding of the
optimization surface

—

error or loss
o o o
SN (0] [o0]
|

o
o

—— true error
—=— hinge
—— huber

0
alpha g

iterations
1.E+00

1.E-01

1.E-02

—
m
S
[

error or loss

1.E-05

1.E-04 -

——error
—=— hinge
—— huber
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Learning rate and robustness

20000-node, 120000-

edge graph

+ 100 pairwise training
preferences enough to

cut down test error to 11
out of 2000

» Careful! Training and
test preferences were
made node-disjoint

20% random reversal
of train pairs 2 5%
Increase Iin test error

- Model cost reduces

test error

500 =

LN
o
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o

testError of 2000
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o
o

o
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numTrainPref

200

- error
—6— model
T T T

T T
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-+ 8.E-09
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0
o
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+ 4.E-09%

S
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Discovering hidden edge weights

00

—_

Assign hidden edge
weights to edge types

Compute weighted
Pagerank and sample <

See if our algorithm can
recover hidden weights

estimated beta

L 2 2

Likewise with o % SR
1 10 hidden beta

Mild overfitting

100

Downward pressure

£15
T 0.8 et 5 §
S 06 A S 1o
o g 1409 o o o
T 04 - . B=1e10 < o o
P - B=1e16 §0'5 | . .
0 S 0
0 02 04 06 08 1 0 5 10 15
hidden alpha hidden beta

Upward pressure
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Part 1 summary

Inner product of weights with feature vector
A very simple scoring model
Still, TFIDF and BM25 evolved over decades
Learning weights: very recent, still evolving

Ranking in graphs increasingly important
Pagerank and friends are just version 0.1

Next step: entity-relationship graphs
Nodes and edges have associated types
Nodes (possibly edges) have associated text

Bootstrap ranking wisdom via learning
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Part 2: Indexing for
Proximity Search

Part-2: Workload-driven indexing

= Type hierarchies are large and deep

- 18000 internal and 80000 leaf types in WordNet

= Runtime atype expansion time-intensive
- Even WordNet knows 650 scientists, 860 cities...

= Index each token as all generalizations

« Sagan - physicist, scientist, person, living thing

- Large index space bloat

§i, Corpus/Index |Gbytes
3gtIndex a subset of Original corpus | 5.72
Gzipped corpus 1.33

atypes Stem index 0.91
Full type index 4.30
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Pre-generalize (and post-filter)

Full set of “atypes” (answer types) is A

Index only a “registered” subse@of A

Say query has atype a; want k answers
Find a's “best” generalization ge R

= Get best®>k spans
that are instances of g ¢

- Given index on R,
this is standard IR
(see paper)

living thing
(causal agent)

person

scientist )4

“Which scientist f N
studied whales? ..(whales)were studied byCousteau..

29

(Pre-generalize and) post-filter

= Fetch each high-scoring span w

= Check if wis-a a
* Fast compact “forward index” (doc,offset)>token
 Fast small “reachability index”, common in XML

= |f fewer than k survive,
restart with larger K’ g
: & living thing
+ Expensive
. P . , (causal agent)
* Pick conservative k

pDerson

scientist )4

..were studied by Cousteau..

30




Estimates needed by optimizer

If we index token ancestors in R as against
ancestors in all of A, how much index space
will we save?

Cannot afford to try out and see for many Rs

If query atype ais not found in R and we
must generalize to g, what will be the bloat
factor in query processing time?

Need to average over a representative workload
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Index space estimate given R

Each token occurrence leads to one posting entry
Assume index compression is a constant factor
Then total estimated index size is proportional to

Z corpusCount(r)
reR Number of tokens in
. corpus that connect up to r
Surprisingly 5 E40
accurate!

noow b
m m m
+ o+ o+
o o O
© © ©

//A

B

0.E+00 T T T T
0.0E+00 5.0E+08 1.0E+09 1.5E+09 2.0E+09 2.5E+09

Estimated Index Size

Observed Index Size




Processing time bloat for one query
= If R=A, query takes time approximated by

tscan COrpusCount(a)

Time to score one candidate

position while scanning postings

queryBloat(a,R) =

Number of occurrences of

descendants of type a

= |f a cannot be found in R, the price paid for
generalization to g consists of

Scanning more posting entries:t,.,, corpusCount(g)

Post-filtering k' responses: k' g,
= Therefore, overall bloat factor is
tscancOrpusCount(g) + k't

tscanCOrpuUsCount(a)

Time to
check if
answer is
instance of
a as well

[oe)

Query time bloat—results

*

500
S 400 -
o
5300
= Observed bloat  >,,,
fit notas good 2
. 8100 -
as index space

estimate .

*» o6 o (o

0 sal

, 20
Estimated Bloat

= While observed::estimated ratio for one query is
noisy, average over many queries is much better
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Expected bloat over many queries

Prob of new query %queryProb(a) queryBloat(a,R)

having atype a Already estimated

= Maximum likelihood estimate
querycountTrain (a)
i queryCounty, i (a')

queryProbr,i,(a) = Z

Many a's get zero training probability
- Optimizer does not register g close to a

Low-prob atypes appear in test - huge bloat
Collectively matter a lot (heavy-tailed distrib)
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Smoothing low-probability atypes
Lidstone smoothing:

queryCounty,i,(a) + ¢
(querycountTrain (a)+ 6)

queryProbr, i, (a) = 3

acA
= Smoothing param / fit by maximizing log-
likelinood of held-out data:

> queryCountyeqou (@) log(queryProbria(a))

acHeldOut LE16 1E13 1EA0 1E07 1E0L—4GO!

[ | Clear range Of gOOd v . e ® %-3000

fits for ¢
= Can probably do better

-4000

-4500

Smoothing param />
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The R selection algorithm

R & roots of A 1. Wtheir.'
sclentst Is
Greedily add the included. ..

“most profitable” atype a*
Profit = ratio of

3. reducing
the profit
of person

scientist

L 2. bloat of
* reduction in bloat of a* and physicist
its descendants to goes down
* increase in index space |2 1.00E-15 +1.00E-06 % 1.00E-03 © 1.00E-01 |
= Downward and upward _ "=y P —
S 1.E+05 i )
traversals and updates 2z, ., %, “improbable”
= Gives a tradeoff fest queries
. % 1.E+02
between index space 1., arge bloa
and query bloat 1.E400 s sko ks e
0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9
Estimated Index Size
37
Optimized space-time tradeoff
¢ Observed  y Estimated Wlth Only
21
5 16 X 520MB, only
o 1.9 avg bloat
o 11
S | &
o) 6 \/
z ¢
R S S W%
0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9
Observed Index Size
2001
§1501 >K
g1001 ’ %
= 1
0.0E+0 5.0Ié+8 1 .0Ié+9 1 .5Ié+9 2.0Ié+9 2.5& Sg’E+9

Observed Index Size
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Optimized index sizes

Corpus/Index Gbytes
Original corpus 5.72
Gzipped corpus 1.33
Stem index 0.91
Full type index 4.30
Reachability index | 0.01
Forward index 1.16
Atype subset index] 0.52
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Part 2 summary

= Working prototype around Lucene and UIMA
Annotators attach tokens to type taxonomy
Query atype workload help compact index
Ranking function learnt from preference data
NL queries translated into atype+selectors

= Ongoing work
Indexing and searching relations other than is-a
More general notions of graph proximity

= Email for code
access
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The big picture

> Proximity scoring Queries from query logs »  Atype workload
o s function learner : : R
o o Answer tokens in context ¥ N
= g Rank SVM Train || Test
= 5 : 3 Text corpus
5 o | i | Smooth loss approx | Y
= 8| i Graph ranking model ‘ L 5 =
@ Al i ] Annotators S o= @ -2
& T ——————. ' 5 .,%'9 N g _(g
= | 1 Named entity SRE| |52
PE———_— recognizer O T =
v
Lexical network 7
St o
\L § | (atype) connector //
— \—/
o
A Reachability rall) l Smo_othed atype
o S distribution
\—/ .
S ] Forward e Corpus annotated with queryProb(atype)
" > S | links to lexical network
c o} B aaess I I S N, Z—
o = At :full : 3
x 5 ypes: fu : _ :
ﬁ SRR ‘:Jg "~ corpusCount(atype) stats Workload-grlven ]
N atype subset
2 Atype: subset || § \ : } }::F;woser
= - 00 Registered atype subset
Email for code access »

= Perform limited pre-structuring of corpus
Difficult to anticipate all query needs

Attach graph structure where possible

Do not insist on specific schema

Partial structure and raw text coexist

= Exploit statistical tools on graph models

» Models of influence along links getting clearer
-/JVVhat is a query? What is a response?

+ Ranking in graphs still under-explored

- Scalable indexing and “top-k” query
execution are major challenges

\ .
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