
Building Blocks

for Semantic Search Engines:

Ranking and Compact Indexing

for Entity-Relation Graphs

Soumen Chakrabarti
www.cse.iitb.ac.in/~soumen

IIT Bombay

(In fewer words)

Ranking and Indexing

for Semantic Search

with

Alekh Agarwal, Sujatha Das
Vijay Krishnan, Kriti Puniyani

Supported by
IBM, Microsoft, Yahoo!

3

Working notion of semantic search

� Exploiting in conjunction

• “Strings with meaning” – entities and relations

• “Uninterpreted strings” – as in IR

� “Is-a” and other relations

� Proximity

� Conductance

� Can approximate
many info needs

� “Warehousing”
not enough

4

Type-annotated corpus and query e.g.

Born in New York in 1934 , Sagan was
a noted astronomer whose lifelong passion

was searching for intelligent life in the cosmos.

person

scientist

physicist

astronomer

entity

region

city

district

state

hasDigit isDDDD

Where was Sagan born?
� type=region NEAR “Sagan”

Name a physicist who searched
for intelligent life in the cosmos

� type=physicist NEAR “cosmos”…

When was Sagan born?
� type=time

pattern=isDDDD NEAR

“Sagan” “born”

abstraction

time

year

is-a

5

The query class we address

� Find a token span w (in context) such that

• w is a mention of entity e

• “Carl Sagan” or “Sagan” is a mention of the concept of

that specific physicist

• e is an instance of atype a given in the query

• Which a=physicist …

• w is “NEAR” a set of selector strings

• “searched”, “intelligent”, “life”, “cosmos”

� All uncertain/imprecise; we focus on #3

� Yet surprisingly powerful: correct answer
within top 3—4 w’s for TREC QA benchmark

6

Contribution 1: What is “NEAR”?

� XQuery and XPath full text support

• (distance at most|window) 10 words [ordered] –

hard proximity clause, not learnt

• ftcontains … with thesaurus at … relationship
"narrower terms" at most � levels

� No implementation combining “narrower
terms” and “soft” proximity ranking

� Search engines favor proximity in proprietary
ways

A learning framework for graph proximity

7

Contribution 2: Indexing annotations

� type=person NEAR theory relativity � type in
{physicist, politician, cricketer,…} NEAR
theory relativity

• Large fanout at query time, impractical

� Complex annotation indexes tend to be large

• Binding Engine (WWW 2005): 10x index size

blowup with only a handful of entity types

• Our target: 18000 atypes today, more later

Workload-driven index and query
optimization

• Exploit skew in query atype workload

Part 1: Scoring and Ranking

Nodes in Graphs

9

Two flavors of ranking problems

� The restricted query class we just discussed

• 0/1 type membership via “perfect” taxonomy

• NEAR captured via token rareness and distance

between match tokens and candidate token

� General typed entity-relationship (ER) graph

• Typed edges and nodes with text

• Random walk biased by

• Query matching node text

• Semantics of edge types

• Learn walk parameters,

don’t guess them

Person

works-for

Paper

cited in-reply-to

wrote
sent

Email

received

Company

10

Learning to score token spans

� type=person NEAR “television” “invent*”

� Rarity of selectors

� Distance from
candidate position
to selectors

� Many occurrences
of one selector
• Closest is good

� Combining scores
from many selectors
• Sum is good

Candidate position to scoreSelectors

Closest

stem

“invent”

te
le

v
is

io
n

w
a
s

in
v
e
n
te

d in

1
9
2

5
.

In
v
e
n
to

r

J
o
h
n
 B

a
ir
d

w
a
s

b
o
rn

E
n
e
rg

y
�

Second-closest

stem “invent”

person

is-a

0−6 −5 −4 −3 −2 +1−1 +2

11

Learning the shape of the decay function

� For simplicity assume left-right symmetry

� Parameters (β1,…,βW), W=max gap window

� Candidate position characterized by a
feature vector f = (f [1],…,f [W])

• If there is a matched selector s at distance j and

• This is the closest occurrence of s

• Then set f [j] to energy(s), … else 0

� Score of candidate position is β⋅f

� If we like candidate u less than v (“u � v”)

• We want β⋅fu ≤ β⋅fv

12

Ranking feature vectors

� “Hard margin” version

� “Soft margin” version

� Quadratic program, slow (watch KDD 2006)

� By eliminating slack vars, can be rewritten as

Regularizer

jisffsB ijji

ji

ij
sRd

p

p

 all for 1'' to subject 'min
0,

+−≤−+ ∑
≥∈

ββββ
β

Slack variable

Approximate with a smooth function

jiff ji
Rd

p all for 1'' to subject 'min −≤−
∈

ββββ
β

∑ −++
∈

ji

ji
R

ffB
d

p

}''1,0max{'min ββββ
β

13

Benign loss functions for scoring

� Replace hinge with

� Differentiable everywhere,
use Newton’s method
• Minutes instead of hours

� Can shift and scale β
without changing rank

� Can set βW+1=0 and
discourage adjacent β’s
from differing too much

� Force monotonic decrease
(not good)

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

LogExp
Hinge
Huber
Exp

∑ −++
∈

ji

ji
R

ffB
d

p

}''1,0{smoothLoss'min ββββ
β

14

Learning decay function—results

)(smoothLoss)(min
1

2
1 v

vu

u

W

j

jj ffB ⋅−⋅+− ∑∑
=

+ ββββ
β

p

Discourage adjacent βs
from differing a lot

Penalize violations of

preference order

Train Test MRR

IR 2000 0.16

2001 2000 0.29TREC

year

Mean reciprocal rank: Average

over questions, reciprocal of
the first rank where an answer

token was found (large good)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Gap j

b
e

ta
(j

)

Roughly unimodal

around gap = 4 and 5

IR Baseline

15

Searching personal information networks

PINDBPINDB

PINSchemaPINSchema

Company

Person
Paper

Email
sent

re
ce

iv
ed

wrote

cited

is-reply-to

Adapter RegistryAdapter Registry

E
m

a
il

 A
d

a
p

te
r

E
m

a
il

 A
d

a
p

te
r

P
a

p
e

r
A

d
a

p
te

r
P

a
p

e
r

A
d

a
p

te
r

P
D

F
,P

S
,D

O
C

M
B

O
X

,I
M

A
P

Paper

Author

Email

From

To CC

Citation

Affiliation

R
e

c
o

n
c

il
ia

ti
o

n
 R

e
g

is
tr

y
R

e
c

o
n

c
il

ia
ti

o
n

 R
e

g
is

tr
y

Text Index Graph Index

Searching and Browsing InterfaceSearching and Browsing Interface

Free-form keyword QueryFree-form keyword Query Type-near-predicate QueryType-near-predicate Query Activated-twig QueryActivated-twig Query Graph BrowserGraph Browser

P
e

rs
o

n
-t

o
-

p
e

rs
o

n
P

e
rs

o
n

-t
o

-

p
e

rs
o

n

P
a

p
e

r-
to

-

p
a

p
e

r
P

a
p

e
r-

to
-

p
a

p
e

r

E
m

a
il-

m
e

n
ti
o

n
s
-

p
e

rs
o

n
E

m
a

il-
m

e
n

ti
o

n
s
-

p
e

rs
o

n

w
o
rk

s-
fo

r

16

type=person NEAR paper={xml AND index}

T
o
p
-ra

n
k
in

g
 p

e
rs

o
n
s
�

Gerhard Weikum

Why is Gerhard the best?

17

Ranking nodes in ER graphs

� Nodes have entity types: Person, Paper,
Email, Company

� Edges have relation types: wrote, sent, cited,

in-reply-to; edge e has type t(e)∈{1,…T}

� Edge i�j of type t has weight β(t) and
conductance C(i�j)…

Person

works-for

Paper

cited in-reply-to

wrote
sent

Email

received

Company

i

j
β=2

β=3

β=3

Probability

of following
blue edge

out of i is
2/(2+3+3)

Teleport?

18

Edge conductance

Dead-end Ordinary walk step

Teleport from dummy

node to ordinary nodes
Teleport from ordinary

nodes to dummy node

19

Constrained design of conductance

� Hard constraints � Most parsimonious

model?

• All β(t)=1:

• All β(t) equal:

Scaling all β preserves p, so

we can demand all β(t)≥1

Must break this recurrence

between p and p to solve directly

jipp ji p all for

)(

:to subject

)ModelCost(min

≤

=

≥

pCp

1

β

β
β

No margin!? –Because an
arbitrary margin (say 1)

may never be attainable by

deviating from the
parsimonious model and

scaling β (unlike RankSVM)

∑ −=
t

t 2)1)(()ModelCost(ββ

∑ ≠
−=

'

2))'()(()ModelCost(
tt

tt βββ

20

Breaking the p=Cp recurrence

� Pagerank is usually approximated by the

Power Method: p ≈ CHp0 where

• H is a large enough horizon to give convergence

• p0 is an initial distribution over nodes, usually
uniform

� Compute alongside Pagerank (chain rule):

∑ −=
j j

h
i

h pCjiCpC)(),()(010

21

Setting up the optimization

� Objective

� Gradient of the loss part

� Polynomial ratios and products—surface not
monotonic or unimodal, need some grid
search

() ()∑ ∑
≠

≥
−+−

'

002
)()(huber)'()(min

tt ji

j
H

i
H pCpCBtt

p

ββ
β 1

()














∂

∂
−

∂

∂
−∑)(

)(

)(

)(
)()(huber'

00
00

t

pC

t

pC
pCpC

j
H

i
H

ji

j
H

i
H

ββ
p

22

The effect of a limited horizon

� Gradients also

converge, residuals

decrease exponentially

• Not surprising

• Can perhaps prove
given some

assumptions

� As H increases

• More CPU time needed

• Gradient is more

accurate, low test error

• Fewer Newton iterations
needed

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

0 10 20 30
iteration (i)

m
a

x
 |
g

ra
d

(i
)-

g
ra

d
(i
-1

)|

GradWrtBeta1
GradWrtBeta2
GradWrtBeta3
GradWrtBeta5

0

5

10

15

20

25

30

8 10 12 14 16horizon

test error

iterations

23

Appropriateness of loss approximation

� Less reliable than true
error (as usual)

� Hinge loss is even
worse than Huber

� “In practice”…
• β optimization never

seems to get trapped in
local minima

• α optimization is started
from a 0:0.1:1 grid

� Need better
understanding of the
optimization surface

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1alpha

e
rr

o
r

o
r

lo
s
s true error

hinge
huber

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 2 3 4 5 6iterations

e
rr

o
r

o
r

lo
s
s

error
hinge
huber

24

Learning rate and robustness

� 20000-node, 120000-

edge graph

• 100 pairwise training

preferences enough to
cut down test error to 11

out of 2000

• Careful! Training and

test preferences were

made node-disjoint

� 20% random reversal

of train pairs � 5%

increase in test error

• Model cost reduces

0

100

200

300

400

500

0 50 100 150 200
numTrainPref

te
s
tE

rr
o

r
o

f
2

0
0

0

0

0.01

0.02

0.03

0.04

0.05

0 0.04 0.08 0.12

fraction noise

te
s
t
e

rr
o

r

0.E+00

2.E-09

4.E-09

6.E-09

8.E-09

1.E-08

m
o

d
e

l c
o

s
t

error

model

25

Discovering hidden edge weights

1

10

100

1 10 100hidden beta

e
s
tim

a
te

d
 b

e
ta

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
hidden alpha

e
s
tim

a
te

d
 a

lp
h

a

B=1e10

B=1e16

Upward pressure

� Assign hidden edge
weights to edge types

� Compute weighted
Pagerank and sample �

� See if our algorithm can

recover hidden weights

� Likewise with α

Mild overfitting Downward pressure

0

0.5

1

1.5

0 5 10 15 20
hidden beta

e
s
t
b

e
ta

/h
id

d
e

n
 b

e
ta

26

Part 1 summary

� Inner product of weights with feature vector

• A very simple scoring model

• Still, TFIDF and BM25 evolved over decades

• Learning weights: very recent, still evolving

� Ranking in graphs increasingly important

• Pagerank and friends are just version 0.1

� Next step: entity-relationship graphs

• Nodes and edges have associated types

• Nodes (possibly edges) have associated text

� Bootstrap ranking wisdom via learning

Part 2: Indexing for

Proximity Search

28

Part-2: Workload-driven indexing

� Type hierarchies are large and deep

• 18000 internal and 80000 leaf types in WordNet

� Runtime atype expansion time-intensive

• Even WordNet knows 650 scientists, 860 cities…

� Index each token as all generalizations

• Sagan � physicist, scientist, person, living thing

• Large index space bloat

Index a subset of
atypes

Corpus/Index Gbytes

Original corpus 5.72

Gzipped corpus 1.33

Stem index 0.91

Full type index 4.30

29

Pre-generalize (and post-filter)

� Full set of “atypes” (answer types) is A

� Index only a “registered” subset R of A

� Say query has atype a; want k answers

� Find a’s “best” generalization g∈R

� Get best k’ >k spans
that are instances of g

• Given index on R,

this is standard IR

(see paper)
scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…

a

g

“Which scientist

studied whales?

30

(Pre-generalize and) post-filter

� Fetch each high-scoring span w

� Check if w is-a a

• Fast compact “forward index” (doc,offset)�token

• Fast small “reachability index”, common in XML

� If fewer than k survive,
restart with larger k’

• Expensive

• Pick conservative k’

scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…�

a

g

31

Estimates needed by optimizer

� If we index token ancestors in R as against
ancestors in all of A, how much index space
will we save?

• Cannot afford to try out and see for many Rs

� If query atype a is not found in R and we
must generalize to g, what will be the bloat
factor in query processing time?

• Need to average over a representative workload

32

Index space estimate given R

� Each token occurrence leads to one posting entry

� Assume index compression is a constant factor

� Then total estimated index size is proportional to

� Surprisingly

accurate!

Number of tokens in

corpus that connect up to r

∑
∈Rr

rtcorpusCoun)(

33

Processing time bloat for one query

� If R=A, query takes time approximated by

� If a cannot be found in R, the price paid for
generalization to g consists of

• Scanning more posting entries:

• Post-filtering k’ responses:

� Therefore, overall bloat factor is

)(scan atcorpusCount

Time to score one candidate
position while scanning postings

Number of occurrences of
descendants of type a

)(scan gtcorpusCount

filter' tk

Time to
check if

answer is
instance of

a as well
)(

')(
),(

scan

filterscan

atcorpusCount

tkgtcorpusCount
RaqueryBloat

+
=

34

Query time bloat—results

0

100

200

300

400

500

0 10 20
Estimated Bloat

O
b

s
e

rv
e

d
 B

lo
a

t

� Observed bloat

fit not as good

as index space

estimate

� While observed::estimated ratio for one query is

noisy, average over many queries is much better

35

Expected bloat over many queries

� Maximum likelihood estimate

� Many a’s get zero training probability
� Optimizer does not register g close to a

� Low-prob atypes appear in test � huge bloat

� Collectively matter a lot (heavy-tailed distrib)

Prob of new query
having atype a

∑ ∈Aa
RaqueryBloataqueryProb),()(

Already estimated

∑ ∈

=

Aa
aqueryCount

aqueryCount
aqueryProb

' Train

Train
Train

)'(

)(
)(

36

Smoothing low-probability atypes

� Lidstone smoothing:

� Smoothing param � fit by maximizing log-

likelihood of held-out data:

� Clear range of good
fits for �

� Can probably do better

))(log()(Train

HeldOut

HeldOut aqueryProbaqueryCount
a

∑
∈

()∑ ∈
+

+
=

Aa
aqueryCount

aqueryCount
aqueryProb

' Train

Train
Train

)'(

)(
)(

l

l

Smoothing param � �

37

The R selection algorithm

� R  roots of A

� Greedily add the

“most profitable” atype a*

� Profit = ratio of

• reduction in bloat of a* and
its descendants to

• increase in index space

� Downward and upward

traversals and updates

� Gives a tradeoff

between index space

and query bloat

scientist

physicist

person
1. When

scientist is
included…

2. bloat of
physicist

goes down

3. reducing
the profit
of person

� too small;

“improbable”
test queries

� too small;

“improbable”
test queries
�large bloat

38

Optimized space-time tradeoff

1

6

11

16

21

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9

Observed Index Size

Observed Estimated

1

501

1001

1501

2001

0.0E+0 5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9

Observed Index Size

A
v
e

ra
g

e
 B

lo
a

t
M

a
x
im

u
m

 B
lo

a
t

With only

520MB, only

1.9 avg bloat

39

Corpus/Index Gbytes

Original corpus 5.72

Gzipped corpus 1.33

Stem index 0.91

Full type index 4.30

Reachability index 0.01

Forward index 1.16

Atype subset index 0.52

Optimized index sizes

40

Part 2 summary

� Working prototype around Lucene and UIMA

• Annotators attach tokens to type taxonomy

• Query atype workload help compact index

• Ranking function learnt from preference data

• NL queries translated into atype+selectors

� Ongoing work

• Indexing and searching relations other than is-a

• More general notions of graph proximity

� Email soumen@cse.iitb.ac.in for code
access

41

The big picture

Email soumen@cse.iitb.ac.in for code access

Atype: subset

Text corpus

Corpus annotated with

links to lexical network

Annotators

Named entity

recognizer

Lexical network

(atype) connector

Atypes: full

Forward In
d

e
x
e

r
P

a
s
s
1

Queries from query logs Atype workloadProximity scoring

function learner
Answer tokens in context

Rank SVM

Smooth loss approx

Graph ranking model

Smoothed atype

distribution

queryProb(atype)

Workload-driven

atype subset

chooserRegistered atype subset

P
a

s
s
2Q

u
e

ry
 p

ro
c
e

s
s
o

r
S

c
o

ri
n

g
 f

u
n

c
ti
o

n

corpusCount(atype) stats

Reachability

Stems

Train Test

C
a

n
d

id
a

te

a
ty

p
e

d
is

tr
ib

u
ti
o

n

C
ro

s
s
-

v
a

lid
a

ti
o

n

T
y
p

e
d

 p
ro

x
im

it
y
 q

u
e

ry
T

o
p

k
to

k
e

n
s

42

Conclusion
� Perform limited pre-structuring of corpus

• Difficult to anticipate all query needs

• Attach graph structure where possible

• Do not insist on specific schema

• Partial structure and raw text coexist

� Exploit statistical tools on graph models

• Models of influence along links getting clearer

• What is a query? What is a response?

• Ranking in graphs still under-explored

• Scalable indexing and “top-k” query

execution are major challenges

