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Working notion of semantic search

� Exploiting in conjunction

• “Strings with meaning” – entities and relations

• “Uninterpreted strings” – as in IR

� “Is-a” and other relations

� Proximity

� Conductance

� Can approximate
many info needs

� “Warehousing”
not enough
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Type-annotated corpus and query e.g.

Born in New York in 1934 , Sagan was
a noted astronomer whose lifelong passion

was searching for intelligent life in the cosmos. 

person

scientist

physicist

astronomer

entity

region

city

district

state

hasDigit isDDDD

Where was Sagan born?
� type=region NEAR “Sagan”

Name a physicist who searched
for intelligent life in the cosmos

� type=physicist NEAR “cosmos”…

When was Sagan born?
� type=time

pattern=isDDDD NEAR

“Sagan” “born”

abstraction

time

year

is-a
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The query class we address

� Find a token span w (in context) such that

• w is a mention of entity e

• “Carl Sagan” or “Sagan” is a mention of the concept of 

that specific physicist

• e is an instance of atype a given in the query

• Which a=physicist …

• w is “NEAR” a set of selector strings

• “searched”, “intelligent”, “life”, “cosmos”

� All uncertain/imprecise; we focus on #3

� Yet surprisingly powerful: correct answer 
within top 3—4 w’s for TREC QA benchmark
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Contribution 1: What is “NEAR”?

� XQuery and XPath full text support

• (distance at most|window) 10 words [ordered] –

hard proximity clause, not learnt

• ftcontains … with thesaurus at … relationship 
"narrower terms" at most � levels

� No implementation combining “narrower 
terms” and “soft” proximity ranking

� Search engines favor proximity in proprietary 
ways

A learning framework for graph proximity
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Contribution 2: Indexing annotations

� type=person NEAR theory relativity � type in 
{physicist, politician, cricketer,…} NEAR 
theory relativity

• Large fanout at query time, impractical

� Complex annotation indexes tend to be large

• Binding Engine (WWW 2005): 10x index size 

blowup with only a handful of entity types

• Our target: 18000 atypes today, more later

Workload-driven index and query 
optimization

• Exploit skew in query atype workload

Part 1: Scoring and Ranking

Nodes in Graphs
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Two flavors of ranking problems

� The restricted query class we just discussed

• 0/1 type membership via “perfect” taxonomy

• NEAR captured via token rareness and distance 

between match tokens and candidate token

� General typed entity-relationship (ER) graph

• Typed edges and nodes with text

• Random walk biased by

• Query matching node text

• Semantics of edge types

• Learn walk parameters,

don’t guess them

Person

works-for

Paper

cited in-reply-to

wrote
sent

Email

received

Company
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Learning to score token spans

� type=person NEAR “television” “invent*”

� Rarity of selectors

� Distance from
candidate position
to selectors

� Many occurrences
of one selector
• Closest is good

� Combining scores
from many selectors
• Sum is good

Candidate position to scoreSelectors
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Learning the shape of the decay function

� For simplicity assume left-right symmetry

� Parameters (β1,…,βW), W=max gap window

� Candidate position characterized by a 
feature vector f = (f [1],…,f [W])

• If there is a matched selector s at distance j and 

• This is the closest occurrence of s

• Then set f [j ] to energy(s), … else 0

� Score of candidate position is β⋅f

� If we like candidate u less than v (“u � v”)

• We want β⋅fu  ≤ β⋅fv
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Ranking feature vectors

� “Hard margin” version

� “Soft margin” version

� Quadratic program, slow (watch KDD 2006)

� By eliminating slack vars, can be rewritten as

Regularizer

jisffsB ijji

ji

ij
sRd

p

p

 all for 1'' to subject 'min
0,

+−≤−+ ∑
≥∈

ββββ
β

Slack variable

Approximate with a smooth function

jiff ji
Rd

p all for 1'' to subject 'min −≤−
∈

ββββ
β

∑ −++
∈

ji

ji
R

ffB
d

p

}''1,0max{'min ββββ
β



13

Benign loss functions for scoring

� Replace hinge with

� Differentiable everywhere, 
use Newton’s method
• Minutes instead of hours

� Can shift and scale β
without changing rank

� Can set βW+1=0 and 
discourage adjacent β’s 
from differing too much

� Force monotonic decrease 
(not good)
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Learning decay function—results 
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Discourage adjacent βs
from differing a lot

Penalize violations of

preference order

Train Test MRR

IR 2000 0.16

2001 2000 0.29TREC

year

Mean reciprocal rank: Average 

over questions, reciprocal of  
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Searching personal information networks
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type=person NEAR paper={xml AND index}

T
o
p
-ra

n
k
in

g
 p

e
rs

o
n
s
�

Gerhard Weikum

Why is Gerhard the best?
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Ranking nodes in ER graphs

� Nodes have entity types: Person, Paper, 
Email, Company

� Edges have relation types: wrote, sent, cited, 

in-reply-to; edge e has type t(e)∈{1,…T}

� Edge i�j of type t has weight β(t) and 
conductance C(i�j)…

Person

works-for

Paper

cited in-reply-to

wrote
sent

Email

received

Company

i

j
β=2

β=3

β=3

Probability 

of following 
blue edge  

out of i is 
2/(2+3+3)

Teleport?
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Edge conductance

Dead-end Ordinary walk step

Teleport from dummy 

node to ordinary nodes
Teleport from ordinary 

nodes to dummy node
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Constrained design of conductance

� Hard constraints � Most parsimonious 

model?

• All β(t)=1:

• All β(t) equal:

Scaling all β preserves p, so 

we can demand all β(t)≥1

Must break this recurrence 

between p and p to solve directly
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scaling β (unlike RankSVM)
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Breaking the p=Cp recurrence

� Pagerank is usually approximated by the 

Power Method: p ≈ CHp0 where

• H is a large enough horizon to give convergence

• p0 is an initial distribution over nodes, usually 
uniform

� Compute alongside Pagerank (chain rule):
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h
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Setting up the optimization

� Objective

� Gradient of the loss part

� Polynomial ratios and products—surface not 
monotonic or unimodal, need some grid 
search

( ) ( )∑ ∑
≠

≥
−+−

'

002
)()(huber)'()(min

tt ji

j
H

i
H pCpCBtt

p

ββ
β 1

( )














∂

∂
−

∂

∂
−∑ )(

)(

)(

)(
 )()(huber'

00
00

t

pC

t

pC
pCpC

j
H

i
H

ji

j
H

i
H

ββ
p

22

The effect of a limited horizon

� Gradients also 

converge, residuals 

decrease exponentially

• Not surprising

• Can perhaps prove 
given some 

assumptions

� As H increases

• More CPU time needed

• Gradient is more 

accurate, low test error

• Fewer Newton iterations 
needed
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Appropriateness of loss approximation

� Less reliable than true 
error (as usual)

� Hinge loss is even 
worse than Huber

� “In practice”…
• β optimization never 

seems to get trapped in 
local minima

• α optimization is started 
from a 0:0.1:1 grid

� Need better 
understanding of the 
optimization surface
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Learning rate and robustness

� 20000-node, 120000-

edge graph

• 100 pairwise training 

preferences enough to 
cut down test error to 11 

out of 2000

• Careful! Training and 

test preferences were 

made node-disjoint

� 20% random reversal 

of train pairs � 5% 

increase in test error

• Model cost reduces
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Discovering hidden edge weights
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Upward pressure

� Assign hidden edge 
weights to edge types

� Compute weighted 
Pagerank and sample �

� See if our algorithm can 

recover hidden weights

� Likewise with α

Mild overfitting Downward pressure
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Part 1 summary

� Inner product of weights with feature vector

• A very simple scoring model

• Still, TFIDF and BM25 evolved over decades

• Learning weights: very recent, still evolving

� Ranking in graphs increasingly important

• Pagerank and friends are just version 0.1

� Next step: entity-relationship graphs

• Nodes and edges have associated types

• Nodes (possibly edges) have associated text

� Bootstrap ranking wisdom via learning



Part 2: Indexing for

Proximity Search
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Part-2: Workload-driven indexing

� Type hierarchies are large and deep

• 18000 internal and 80000 leaf types in WordNet

� Runtime atype expansion time-intensive

• Even WordNet knows 650 scientists, 860 cities…

� Index each token as all generalizations

• Sagan � physicist, scientist, person, living thing

• Large index space bloat

Index a subset of
atypes

Corpus/Index Gbytes

Original corpus 5.72

Gzipped corpus 1.33

Stem index 0.91

Full type index 4.30
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Pre-generalize (and post-filter)

� Full set of “atypes” (answer types) is A

� Index only a “registered” subset R of A

� Say query has atype a; want k answers

� Find a’s “best” generalization g∈R

� Get best k’ >k spans
that are instances of g

• Given index on R,

this is standard IR

(see paper)
scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…

a

g

“Which scientist

studied whales?
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(Pre-generalize and) post-filter

� Fetch each high-scoring span w

� Check if w is-a a

• Fast compact “forward index” (doc,offset)�token

• Fast small “reachability index”, common in XML

� If fewer than k survive,
restart with larger k’

• Expensive

• Pick conservative k’

scientist

person
causal agent

living thing

entity

…whales were studied by Cousteau…�

a

g
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Estimates needed by optimizer

� If we index token ancestors in R as against 
ancestors in all of A, how much index space 
will we save?

• Cannot afford to try out and see for many Rs

� If query atype a is not found in R and we 
must generalize to g, what will be the bloat 
factor in query processing time?

• Need to average over a representative workload
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Index space estimate given R

� Each token occurrence leads to one posting entry

� Assume index compression is a constant factor

� Then total estimated index size is proportional to

� Surprisingly 

accurate!

Number of tokens in 

corpus that connect up to r

∑
∈Rr

rtcorpusCoun )(
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Processing time bloat for one query

� If R=A, query takes time approximated by

� If a cannot be found in R, the price paid for 
generalization to g consists of

• Scanning more posting entries:

• Post-filtering k’ responses:

� Therefore, overall bloat factor is

)(scan atcorpusCount

Time to score one candidate 
position while scanning postings

Number of occurrences of
descendants of type a

)(scan gtcorpusCount

filter' tk

Time to 
check if 

answer is 
instance of 

a as well
)(

')(
),(
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RaqueryBloat

+
=
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Query time bloat—results 
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as index space 

estimate

� While observed::estimated ratio for one query is 

noisy, average over many queries is much better



35

Expected bloat over many queries

� Maximum likelihood estimate

� Many a’s get zero training probability
� Optimizer does not register g close to a

� Low-prob atypes appear in test � huge bloat

� Collectively matter a lot (heavy-tailed distrib)

Prob of new query 
having atype a
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Smoothing low-probability atypes

� Lidstone smoothing:

� Smoothing param � fit by maximizing log-

likelihood of held-out data:

� Clear range of good
fits for �

� Can probably do better

))(log()( Train

HeldOut

HeldOut aqueryProbaqueryCount
a

∑
∈

( )∑ ∈
+

+
=

Aa
aqueryCount

aqueryCount
aqueryProb

' Train

Train
Train

)'(

)(
)(

l

l

Smoothing param � �



37

The R selection algorithm

� R  roots of A

� Greedily add the

“most profitable” atype a*

� Profit = ratio of

• reduction in bloat of a* and 
its descendants to

• increase in index space

� Downward and upward 

traversals and updates

� Gives a tradeoff

between index space

and query bloat

scientist

physicist

person
1. When 

scientist is 
included…

2. bloat of 
physicist 

goes down

3. reducing
the profit
of person

� too small; 

“improbable”
test queries

� too small; 

“improbable”
test queries 
�large bloat
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Optimized space-time tradeoff
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Corpus/Index Gbytes

Original corpus 5.72

Gzipped corpus 1.33

Stem index 0.91

Full type index 4.30

Reachability index 0.01

Forward index 1.16

Atype subset index 0.52

Optimized index sizes
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Part 2 summary

� Working prototype around Lucene and UIMA

• Annotators attach tokens to type taxonomy

• Query atype workload help compact index

• Ranking function learnt from preference data

• NL queries translated into atype+selectors

� Ongoing work

• Indexing and searching relations other than is-a

• More general notions of graph proximity

� Email soumen@cse.iitb.ac.in for code 
access



41

The big picture

Email soumen@cse.iitb.ac.in for code access

Atype: subset

Text corpus

Corpus annotated with 

links to lexical network
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Named entity 
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Conclusion
� Perform limited pre-structuring of corpus

• Difficult to anticipate all query needs 

• Attach graph structure where possible

• Do not insist on specific schema

• Partial structure and raw text coexist

� Exploit statistical tools on graph models

• Models of influence along links getting clearer

• What is a query? What is a response?

• Ranking in graphs still under-explored

• Scalable indexing and “top-k” query 

execution are major challenges


