A new editing scheme based on a fast two-string median computation applied to OCR

José Ignacio Abreu Salas¹ Juan Ramón Rico-Juan²

¹Universidad de Matanzas, Cuba jose.abreu@umcc.cu

²Pattern Recognition and Artificial Intelligence Group Department of Software and Computing Systems University of Alicante, E-03071 Alicante, Spain, juanra@dlsi.ua.es

August 18-20, 2010 (S+SSPR)

Outline

Outline

- Motivation
- Prototype Construction
- Editing Algorithm
- Experiments
- **5** Conclusions & Future Work

- Motivation
- 2 Prototype Construction
- 3 Editing Algorithm
- 4 Experiments
- Conclusions & Future Work

Introduction

- Dataset editing has received considerable attention from the seminal works of Wilson [Wilson, 1972].
- Edited near neighbor rule technique can be useful to improve nearest neighbor classifiers response.
- Algorithms as [Devijver and Kittler, 1980],
 [Ferri and Vidal, 1992], [Tomek, 1976a] and
 [Vázquez et al., 2005] focus on deleting wrong tagged
 instances from a training set and improve basic Wilson
 algorithm.
- Another group of algorithms also changes some instances tag as [Koplowitz and Brown, 1981] and [Tomek, 1976b].
- Syntactic coding such strings and trees are commonly used instead of vectorial representations.

Baseline

- Wilson algorithm to edit training set;
- Strings (Freeman Chain-code) as prototypes;
- K Nearest Neighbor as classification technique.

Our goa

- Revise the Wilson editing scheme for improve classification task by adding new artificial prototypes.
- Define a fast two-string median algorithm to create a new artificial prototype.

Baseline

- Wilson algorithm to edit training set;
- Strings (Freeman Chain-code) as prototypes;
- K Nearest Neighbor as classification technique.

Our goal

- Revise the Wilson editing scheme for improve classification task by adding new artificial prototypes.
- Define a fast two-string median algorithm to create a new artificial prototype.

- Prototype Construction

Prototype Construction

Remarks

- New prototype is built from two strings (Freeman chain-code).
- This approach is easier and faster than compute median string between N prototypes.
- The Levenshtein edit distance [Levenshtein, 1966] is used as starting point.

Edit Distance

- Let Σ be an alphabet and $S_1=\{S_{11},S_{12}..S_{1m}\}$, $S_2=\{S_{21},S_{22}..S_{2n}\}$ two strings over Σ where $m,n\geq 0$
- The edit distance between S_1 and S_2 , $D(S_1, S_2)$, is defined in terms of elementary edit operations:
 - substitution of a symbol $a \in S_1$ by a symbol $b \in S_2$, denoted as w(a,b)
 - insertion of a symbol $b \in S_2$ in S_1 , denoted as $w(\varepsilon,b)$
 - deletion of a symbol $a \in S_1$, denoted as $w(a, \varepsilon)$.
- Let $Q_{Si}^{Sj} = \{q_1, q_2, ..., q_k\}$ be a sequence of edit operations transforming S_i into S_j
- Cost of the sequence, $E_{Q_{\varsigma_2}^{S1}} = \sum_{i=1}^k e(q_i)$
- $D(S_1, S_2) = argmin\{ E_{Q_{S_2}^{S_1}} \}$
- The dynamic programming [Wagner and Fischer, 1974] allows to compute $D(S_1, S_2)$ in $\mathcal{O}(L_{S1} \times L_{S2})$ time.

Fast Median String Computation

Median String

- The median of a set T of strings is defined as $argmin_R\{\sum D(R, S_i)|S_i \in T\}$
- In this case, two strings are used.
- Goodness criterion $argmin_R\{|D(R, S_1) D(R, S_2)|\}$
- It satisfies $D(S_1, S_2) = D(S_1, R) + D(R, S_2)$

ast Median String Computation

Example

- $S_1 = \{a, b\}$ and $S_2 = \{d, e\}$
- Costs: $e(w(\cdot, \varepsilon)) = e(w(\varepsilon, \cdot)) = 1$ and $e(w(x, y)) = lexical_order(|x y|)$
- Minimum cost sequence $Q_{51}^{S2} = \{w(a, \varepsilon), w(b, d), w(\varepsilon, e)\} = 1 + 2 + 1 = 4.$

Editing Algorithm

- Motivation
- 2 Prototype Construction
- 3 Editing Algorithm
- 4 Experiments
- **5** Conclusions & Future Work

Wilson vs. our scheme (JJWilson): well classified

The prototype is K-NN well classified

Wilson vs. our scheme (JJWilson): bad classified

The prototype is K-NN bad classified (0 nearest neighbors from the same class)

Wilson vs. our scheme (JJWilson): the difference

The prototype is K-NN bad classified (there are **some nearest neighbors** from the same class)

Wilson K=3 remove prototype

Experiments

- Motivation
- 2 Prototype Construction
- 3 Editing Algorithm
- 4 Experiments
- 5 Conclusions & Future Work

Preparing experiments

Database

- A contour subsets (digits and letters) are extracted from the NIST SPECIAL DATABASE 3 of the National Institute of Standards and Technology.
- 4-fold cross-validation technique are used (60-training and 20-test instances per class)
- K-Nearest Neighbor rule is used to edit and classify.
 - Edit: K = 3..17
 - Classify: K = 1..17

Experiments: Characters

Character set: Average % error rate (4-folds)

									K on E							
		K=3		K=5		K=7		K=9		K=11		K=13		K=15		
K on Classif.	Not Edited	Wilson	JJWilson	Wilson	I IW/ilson											
1	13.7	16.5	14.6	15.8	13.8	16.3	13.8	16.8	13.8	17.1	13.4	17.1	13.4	17.5	13	
3	14.7	17.6	15.3	17.6	14.6	17.5	14.4	17.8	14.2	18.8	14.0	18.9	13.9	19.6	13	
5	15.4	17.6	15.2	17.9	14.4	17.9	14.1	18.5	14.1	18.9	14.2	19.5	14.1	19.8	13	
7	16.0	19.4	16.2	19.6	15.1	19.9	15.2	19.8	14.7	20.2	14.2	20.7	14.0	20.8	14	
9	17.1	19.5	16.3	20.1	15.5	20.3	15.3	20.5	14.8	21.0	14.8	21.6	14.5	21.8	14	
11	17.7	20.0	17.7	20.8	16.5	20.8	16.1	21.3	15.4	21.6	15.0	22.3	15.0	22.3	15	
13	18.3	21.0	18.2	21.2	17.1	21.7	16.4	22.1	16.5	22.5	15.8	22.8	15.5	23.3	15	
15	18.6	22.0	18.9	21.6	18.0	22.3	17.1	22.6	16.7	23.3	16.2	23.5	16.3	23.7	16	
17	19.6	22.1	18.8	22.7	18.0	23.0	17.5	23.8	17.4	24.0	16.9	24.0	16.5	24.6	16	

Experiments: Characters

Character set: Average % error rate (4-folds)

			K on Edition										
		K=3		K=5		K=	=7	K=	=9	K=11			
K on Classif.	Not Edited	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson		
1	13.7	16.5	14.6	15.8	13.8	16.3	13.8	16.8	13.8	17.1	13.4		
3	14.7	17.6	15.3	17.6	14.6	17.5	14.4	17.8	14.2	18.8	14.0		
5	15.4	17.6	15.2	17.9	14.4	17.9	14.1	18.5	14.1	18.9	14.2		
7	16.0	19.4	16.2	19.6	15.1	19.9	15.2	19.8	14.7	20.2	14.2		
9	17.1	19.5	16.3	20.1	15.5	20.3	15.3	20.5	14.8	21.0	14.8		
11	17.7	20.0	17.7	20.8	16.5	20.8	16.1	21.3	15.4	21.6	15.0		
13	18.3	21.0	18.2	21.2	17.1	21.7	16.4	22.1	16.5	22.5	15.8		
15	18.6	22.0	18.9	21.6	18.0	22.3	17.1	22.6	16.7	23.3	16.2		
17	19.6	22.1	18.8	22.7	18.0	23.0	17.5	23.8	17.4	24.0	16.9		

Experiments: Characters

% error rate (4-folds)

			K on E	Edition							
K:	=7	K=9		K=11		K=	=13	K=	=15	K=17	
Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson
16.3	13.8	16.8	13.8	17.1	13.4	17.1	13.4	17.5	13.2	17.8	13.1
17.5	14.4	17.8	14.2	18.8	14.0	18.9	13.9	19.6	13.8	19.9	13.3
17.9	14.1	18.5	14.1	18.9	14.2	19.5	14.1	19.8	13.8	20.2	13.7
19.9	15.2	19.8	14.7	20.2	14.2	20.7	14.0	20.8	14.0	21.3	14.1
20.3	15.3	20.5	14.8	21.0	14.8	21.6	14.5	21.8	14.6	22.2	14.6
20.8	16.1	21.3	15.4	21.6	15.0	22.3	15.0	22.3	15.2	23.1	15.0
21.7	16.4	22.1	16.5	22.5	15.8	22.8	15.5	23.3	15.5	23.7	15.7
22.3	17.1	22.6	16.7	23.3	16.2	23.5	16.3	23.7	16.0	24.2	16.0
23.0	17.5	23.8	17.4	24.0	16.9	24.0	16.5	24.6	16.5	24.8	16.4

Experiments: Digits

Digit set: Average % error rate (4-folds)

									K on E								
		K=	=3	K=5		K=7		K=9		K=11		K=13		K=15		K=17	
K on Classif.	Not Edited	Wilson	JJWilson														
1	1.8	2.8	1.9	2.6	1.8	2.5	1.8	2.9	1.6	2.8	1.6	2.8	1.6	2.8	1.5	2.8	1.5
3	2.0	3.1	2.3	2.9	2.3	3.0	2.0	3.3	1.9	3.4	2.0	3.4	2.0	3.8	1.9	3.9	1.8
5	3.0	3.6	2.9	3.6	2.8	3.8	2.8	4.3	2.6	4.3	2.6	4.1	2.5	4.3	2.3	4.4	2.5
7	3.5	4.3	3.5	4.3	2.9	4.3	2.9	4.5	2.6	4.6	2.6	4.8	2.6	5.0	2.5	5.1	2.4
9	3.6	4.3	3.5	4.1	3.3	4.3	3.0	4.6	2.9	4.9	2.8	4.9	2.8	5.1	2.8	5.4	2.8
11	4.1	4.5	2.9	4.5	2.9	4.6	2.9	4.6	3.0	4.6	3.6	4.8	3.5	4.9	3.5	5.3	3.4
13	4.4	4.8	3.1	4.8	3.3	5.0	3.1	5.0	3.3	5.3	4.0	5.6	3.5	5.9	3.5	5.9	3.4
15	4.8	5.1	3.8	5.1	3.8	5.4	3.6	5.5	3.8	5.5	4.5	6.1	4.3	6.3	4.1	6.3	3.9
17	4.9	5.1	4.1	5.1	4.0	5.4	3.8	5.5	3.9	5.5	4.6	6.1	4.2	6.0	4.3	6.1	4.3

Experiments: Digits

Digit set: Average % error rate (4-folds)

				K on Edition												
		K=3		K=5		K=7		K=9		K=11		K=13				
K on Classif.	Not Edited	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson	Wilson	JJWilson			
1	1.8	2.8	1.9	2.6	1.8	2.5	1.8	2.9	1.6	2.8	1.6	2.8	1.6			
3	2.0	3.1	2.3	2.9	2.3	3.0	2.0	3.3	1.9	3.4	2.0	3.4	2.0			
5	3.0	3.6	2.9	3.6	2.8	3.8	2.8	4.3	2.6	4.3	2.6	4.1	2.5			
7	3.5	4.3	3.5	4.3	2.9	4.3	2.9	4.5	2.6	4.6	2.6	4.8	2.6			
9	3.6	4.3	3.5	4.1	3.3	4.3	3.0	4.6	2.9	4.9	2.8	4.9	2.8			
11	4.1	4.5	2.9	4.5	2.9	4.6	2.9	4.6	3.0	4.6	3.6	4.8	3.5			
13	4.4	4.8	3.1	4.8	3.3	5.0	3.1	5.0	3.3	5.3	4.0	5.6	3.5			
15	4.8	5.1	3.8	5.1	3.8	5.4	3.6	5.5	3.8	5.5	4.5	6.1	4.3			
17	4.9	5.1	4.1	5.1	4.0	5.4	3.8	5.5	3.9	5.5	4.6	6.1	4.2			

Experiments: Digits

ror rate (4-folds)

		K on E	dition									
=7 K=9		K=	K=11		=13	K=	=15	K=17				
JJWilson	Wilson	JJWilson										
1.8	2.9	1.6	2.8	1.6	2.8	1.6	2.8	1.5	2.8	1.5		
2.0	3.3	1.9	3.4	2.0	3.4	2.0	3.8	1.9	3.9	1.8		
2.8	4.3	2.6	4.3	2.6	4.1	2.5	4.3	2.3	4.4	2.5		
2.9	4.5	2.6	4.6	2.6	4.8	2.6	5.0	2.5	5.1	2.4		
3.0	4.6	2.9	4.9	2.8	4.9	2.8	5.1	2.8	5.4	2.8		
2.9	4.6	3.0	4.6	3.6	4.8	3.5	4.9	3.5	5.3	3.4		
3.1	5.0	3.3	5.3	4.0	5.6	3.5	5.9	3.5	5.9	3.4		
3.6	5.5	3.8	5.5	4.5	6.1	4.3	6.3	4.1	6.3	3.9		
3.8	5.5	3.9	5.5	4.6	6.1	4.2	6.0	4.3	6.1	4.3		

Conclusions & Future Work

- Motivation
- 2 Prototype Construction
- 3 Editing Algorithm
- 4 Experiments
- 5 Conclusions & Future Work

Conclusions & Future Work

Conclusions

- A novelty method was presented to edit a dataset of contours encoded by Freeman Chain-code.
- A new fast procedure to compute the median between two strings based on a string edit distance is explained.
- Experiments show that our edit scheme behaves well on the studied datasets.

Future work

- Revise misclassified instance detection, and consider other criteria like SMOTE (Synthetic Minority Over-sampling TEchnique).
- Others datasets could be studied and compared with additional edit methods.
- Our fast median two-strings algorithm could be extended to compute the average of *N* examples.

Conclusions & Future Work

Conclusions

- A novelty method was presented to edit a dataset of contours encoded by Freeman Chain-code.
- A new fast procedure to compute the median between two strings based on a string edit distance is explained.
- Experiments show that our edit scheme behaves well on the studied datasets.

Future work

- Revise misclassified instance detection, and consider other criteria like SMOTE (Synthetic Minority Over-sampling TEchnique).
- Others datasets could be studied and compared with additional edit methods.
- Our fast median two-strings algorithm could be extended to compute the average of *N* examples.

The end

Thanks for your attention

A new editing scheme based on a fast two-string median computation applied to OCR

José Ignacio Abreu Salas¹ Juan Ramón Rico-Juan²

¹Universidad de Matanzas, Cuba jose.abreu@umcc.cu

²Pattern Recognition and Artificial Intelligence Group Department of Software and Computing Systems University of Alicante, E-03071 Alicante, Spain juanra@dlsi.ua.es