1/27

Frequent Regular ltemset Mining

Salvatore Ruggieri

Dipartimento di Informatica, Universita di Pisa,
Largo B. Pontecorvo 3, 56127 Pisa, Italy
ruggieri@di.unipi.it

ACM SIGKDD 2010 - Washington DC, USA

ruggieri@di.unipi.it

Motivation

Concise representations of frequent itemsets:

» alleviate the problems due to extracting, storing and
post-processing a huge amount of frequent patterns.

> closed, free (4+ negative border), non-derivable, disjunctive, ...

2/27

Motivation

Concise representations of frequent itemsets:

» alleviate the problems due to extracting, storing and
post-processing a huge amount of frequent patterns.

> closed, free (4+ negative border), non-derivable, disjunctive, ...

» through a compact, lossless representation, where itemsets
whose support is derivable from others are pruned away

2/27

Motivation

Concise representations of frequent itemsets:

» alleviate the problems due to extracting, storing and
post-processing a huge amount of frequent patterns.

> closed, free (4+ negative border), non-derivable, disjunctive, ...

» through a compact, lossless representation, where itemsets
whose support is derivable from others are pruned away

» at the cost of sacrificing readability and direct interpretability
by a data analyst!

2/27

3/27

Motivation

tid | transaction
1 bed cover support | closed | free
2 zbZde {1’2} 2 abcd d ba bc
3 | b {1,2,3} |3 5 .
4 | ac {1,2,4} [3 Py e
{_aed |
[db dac | [dbc | [bac |
[[da J[b | [d | Cba) Cbec)
diosd]

3/27

Motivation

tid

DWW N R

transaction
bcd. cover | support | closed | free
zbZde {1’2} 2 abcd d ba bc
ac {1,2,4} |3 ac e
{_aed |

[dab dac || dbc | [bac |

|da || do | [dc |(ba)(bc)

o

What itemsets are represented by abcd?

3/27

Motivation

tid

B OWND =

transaction
bcd. cover | support | closed | free
zbZde {1’2} 2 abcd d ba bc
ac {1,2,4} |3 ac e
{_aed |

[dab dac || dbc | [bac |

|da || do | [dc |(ba)(bc)

o

What itemsets are represented by abcd?

Pow (abcd) \

U

Pow(Y)

Y eCS,support(Y)>support(abed)

Contribution

Problem: itemsets represented by a closed itemset (its semantics)
are not derivable from it in isolation.

4/27

Contribution

4/27

Problem: itemsets represented by a closed itemset (its semantics)
are not derivable from it in isolation.

Contribution: an extension of itemsets, called regular, with an
immediate semantics and interpretability, and a conciseness
comparable to closed itemsets.

Contribution

Problem: itemsets represented by a closed itemset (its semantics)
are not derivable from it in isolation.

Contribution: an extension of itemsets, called regular, with an
immediate semantics and interpretability, and a conciseness
comparable to closed itemsets.

e — e — e — -

dabe} . —"
-

~.—"

frequent i closed :

4/27

Basic definitions

set of items 7
> transaction (tid, X) with X C T
» cover(l) = {tid | (tid,X) e D,X C I}
» support(l) = |cover(l)].
> frequent itemsets F = {X C Z | support(X) > minsupp}.

5/27

Basic definitions

set of items 7

> transaction (tid, X) with X C T

> cover(l) = {tid | (tid,X) e D,X C I}

» support(l) = |cover(l)].

> frequent itemsets F = {X C Z | support(X) > minsupp}.
f-equivalence

» relation: X@Y if cover(X) = cover(Y).

> classes: [X]={Y CZ| X0Y}.

> closed itemsets Y € CS iff { Y} = max[X] for some X.

> free itemsets Y € FS iff Y € min[X] for some X.

5/27

Extended itemsets: syntax

The set J of extended items is defined as follows:
E::=ala? | {a,...,an}* | {a1,...,ak}"

where a, a;’s are items, h > 0 and k > 0.
An extended itemset is a subset R C 7.
Ex. The intended meaning of ab{cd}* is

{ab, abc, abd, abcd}
The intended meaning of ab?{cd} ™" is

{ac, ad, acd, abc, abd, abcd }

6/27

Extended itemsets: semantics

Semantics se() : J — Pow(Pow(Z)) for extended items :

se(a) {{a}}

se(a?) = {{a},0}
se({a1,...,an}") = {X|XC{a1,...,an}t}
se({ar,..,akt™) = {X| X C{ar,...,ak}, X #0}.

Semantics s() : Pow(J) — Pow(Pow(Z)) for extended itemsets:

s(er,...,en) ={Ujz1...Xi | Xi €s(e),i=1...n}.

7/27

Extended itemsets: semantics

Semantics se() : J — Pow(Pow(Z)) for extended items :

se(a) {{a}}

se(a?) = {{a},0}
se({a1,...,an}") = {X|XC{a1,...,an}t}
se({ar,..,akt™) = {X| X C{ar,...,ak}, X #0}.

Semantics s() : Pow(J) — Pow(Pow(Z)) for extended itemsets:
s(er,...,en) ={Ujz1...Xi | Xi €s(e),i=1...n}.

s() is and-compositional: the meaning of an extended itemset can
be obtained by looking (only) at the meaning of its items!

7/27

Regular itemsets
Ex. Let D = {(1,ab),(2,a)}, and R = ab?. We have:
s(R) = {a, ab} and

cover(a) = {1,2} # {1} = cover(ab)

8/27

Regular itemsets
Ex. Let D = {(1,ab),(2,a)}, and R = ab?. We have:
s(R) = {a, ab} and
cover(a) = {1,2} # {1} = cover(ab)

Extended itemsets are relevant to the FIM problem only when they
denote itemsets with a common cover.

8/27

Regular itemsets

Ex. Let D = {(1,ab),(2,a)}, and R = ab?. We have:
s(R) = {a, ab} and
cover(a) = {1,2} # {1} = cover(ab)

Extended itemsets are relevant to the FIM problem only when they
denote itemsets with a common cover.

Def. An extended itemset R is said regular if
for every X, Y € s(R) we have that cover(X) = cover(Y).

8/27

Regular itemsets

Ex. Let D = {(1,ab),(2,a)}, and R = ab?. We have:
s(R) = {a, ab} and

cover(a) = {1,2} # {1} = cover(ab)
Extended itemsets are relevant to the FIM problem only when they

denote itemsets with a common cover.

Def. An extended itemset R is said regular if
for every X, Y € s(R) we have that cover(X) = cover(Y).

Other equivalent formulations:
» if s(R) C [X] for some itemset X,
» if for every X, Y € s(R), support(X) = support(Y).

8/27

Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|

where X is any element in s(R).

9/27

Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|
where X is any element in s(R).

Def. A finite set of regular itemsets R is a concise repr. of F if:
(a) Ugers(R)=F, and
(b) for every pair Ry # R, € R, s(R1) N's(Rz) = 0.

9/27

Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|
where X is any element in s(R).

Def. A finite set of regular itemsets R is a concise repr. of F if:
(a) Ugers(R)=F, and
(b) for every pair Ry # R, € R, s(R1) N's(Rz) = 0.

How large is a concise representation R?

9/27

Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|
where X is any element in s(R).
Def. A finite set of regular itemsets R is a concise repr. of F if:
(a) Ugrers(R)=F, and
(b) for every pair Ry # R» € R, s(R1) N's(R2) = 0.
How large is a concise representation R?
ICS| < |R]|, but, in practice, |[CS| ~ |R|

9/27

Towards mining a concise representation

| closed i

10/27

Towards mining a concise representation

[db [cec J[doc | [b |

11/27

Towards mining a concise representation

ey baled
(o | [[e] [bx |

12/27

Towards mining a concise representation

geiy el
(b | [[e] [bx |

13/27

Towards mining a concise representation

The (semantics of the) extended itemsets

d{abc}* ba{cd}* bc{ad}*

are not pair-wise disjoint!

14/27

Towards mining a concise representation

The (semantics of the) extended itemsets

d{abc}* ba{cd}* bc{ad}*
are not pair-wise disjoint!

We would like to express

s(ba{cd}*) \ s(d{abc})

and

s(bc{ad}*) \ (s(d{abc}*) U s(bc{ad}™)

14/27

Non-compositional itemsets

Non-compositional items are extended items plus:
E ::={a1,...,an}"
where h > 0, with the following semantics:
se({a1,...,an}") = {X|XC{a,...,an}}.
Since we do expect b & s(b{b} ™), we define:

s'(er,...,en) ={X €s(er,...,en) | XNYCY
for every e; of the form Y™ }.

s’() is not and-compositional.

15/27

Mining a concise representation

Let C be a closed itemset, and Xi,..., X, be its free itemsets.

A concise representation of [C] is provided by
Ni = Xiaxfa s 7Xi117 (C \ Xi)*

fori=1...n.

16/27

Mining a concise representation

Let C be a closed itemset, and Xi,..., X, be its free itemsets.

A concise representation of [C] is provided by
Ni = Xiaxfa s 7Xi117 (C \ Xi)*

fori=1...n.

d{abc}* ba{d} {cd}* bc{d} {ba} {ad}*

16/27

Mining a concise representation

Let C be a closed itemset, and Xi,..., X, be its free itemsets.

A concise representation of [C] is provided by
Ni = Xiaxfa s 7Xi117 (C \ Xi)*
fori=1...n.
d{abc}* ba{d} {cd}* bc{d} {ba} {ad}*
Next problem: rewrite Ny,..., N, into a set of equivalent pair-wise

disjoint regular itemsets.

16/27

Mining a concise representation

ba{d}*{cd}*s
bac?

4

17/27

Mining a concise representation

ba{d} {cd}* 4 bc{d} {ba} {ad}*
bac? bc{d} {a} " {ad}* 54
bc{a}~a?
—— 54

bc

17/27

Mining a concise representation

Efigl:ifgli 4 bc{d}{ba} {ad}*
bac? bcijiiﬁ}?{ad} S4
befa} o,
bc
bac? bc
M3

b{ac}*

17/27

Towards mining a concise representation

18/27

Splitting rules

RX,Y™ YNX#0 R.X,Z" ZNX#0
R,X,(Y\X)_ R,X,(Z\X)*
R, 0~ R{a}” a¢R
fail R\ {a?}[{a, X}~ — X*]

R,{a,Y}™ a¢R Y #0

S
R\ {a?}[{a, X} = X, Y* R\{a?}[{a, X} = X],a, Y~ >

Rewritings implemented as procedure Covering (see paper).

19/27

Splitting rules

cd{ab} {ab}*

20/27

Splitting rules

First partition s’(cd{ab} {ab}*)N{X C T | a & X}

cd{ab} {ab}* S5

cdb?

20/27

Splitting rules

Second partition s'(cd{ab} {ab}*)N{X CZ | ae€ X}

cd{ab}{ab}*
cda{b}~ b?

cdb?

20/27

Splitting rules

cd{ab} {ab}*
cda{b}~ b?

cda

cdb? S4

20/27

Splitting rules

cd{ab} {ab}*

20/27

Merging rules

R R,a
R, a?

M1

R,b,a? R,a

M3
R, {a, b}

R.Y"T R,aY*

M5
R,{a, Y}+

R R YT

Ay M2

R,YT,a? R,a
M4

R,{a, Y}Jr

R,Yt R,ZV,Y*
M6

R {Z, Y}t

Rewritings implemented as procedure Merging (see paper).

21/27

Frequent Regular ltemsets Mining

Algorithm RegularMine

Input: a transactional database D
Output: a set Ry, of frequent regular itemsets that is a concise
representation of frequent itemsets

extract frequent closed itemsets CS from D
and, for each C € CS, the free sets in [C]
Rout 0
for every C € CS do
let Xi,..., X, be the free sets in [C] ordered w.r.t. <
R = Uj=1...nCovering(X;, X{ ,..., X_;,C*) // rules S1 — S5
Rout — Rout U Merging(R) // rules M1 — M6
end for

22/27

Nondeterminism

Nondeterminism |: The splitting and merging rules are
non-deterministic. The procedures Covering and Merging adopt a
few heuristics to drive the rewriting.

23/27

Nondeterminism

Nondeterminism |: The splitting and merging rules are
non-deterministic. The procedures Covering and Merging adopt a
few heuristics to drive the rewriting.

Nondeterminism II: The order Xi, ..., X, affects the (size of the)
output.

23/27

Nondeterminism

23/27

Nondeterminism |: The splitting and merging rules are
non-deterministic. The procedures Covering and Merging adopt a
few heuristics to drive the rewriting.

Nondeterminism II: The order Xi, ..., X, affects the (size of the)
output.

We (experimentally) resort to [Dong et al. 2005]:

Def. X; <)<J iff ’X,‘ < ‘)@’ or, X,‘ = ‘)@’ and Xi <ex)<J
where =g is a lexicographic order induced by a total order items.

Experimental results: dense datasets

9e+006

pumsb (size = 49046)

8e+006

7e+006

6e+006

5e+006

4e+006

3e+006

Number of itemsets

2e+006

1e+006

0

24000

350000

26000 28000 30000 32000 34000
minsupp

frequent —+— regular -
free ----x---- closed —&

mushroom (size = 8124)

300000

250000

200000

150000

Number of itemsets

100000
50000

0

24/27

20 40 60 80 100
minsupp
frequent —+— regular %
free ----x---- closed —&

Number of itemsets

Number of itemsets

3e+006

2.5e+006

2e+006

1.5e+006

1e+006

500000

0

1.2e+007

1e+007

8e+006

6e+006

4e+006

2e+006

0

census (size = 48842)

20 40 60 80 100
minsupp
frequent —+— regular
free ----x%---- closed —&
chess (size = 3196)
1;\,_“>_.\
800 1000 1200 1400 1600 1800 2000
minsupp
frequent —+— regular %
free ----x%---- closed —&

Experimental results: sparse datasets

BMS-Webview 1 (size = 59602)

700000

|

600000

500000

400000 g

300000

Number of itemsets

200000

100000

0

28 30 32 34
minsupp

frequent —+—
free -

regular -
closed —&

T1014D100K (size = 100000)

1.4e+006

1.2e+006

1e+006

800000

600000

Number of itemsets

400000

200000

0
4 6 8 10 12

minsupp

frequent —+—
free -

25 /27

16 18 20
regular %
closed —&

Number of itemsets

Number of itemsets

1.6e+006
1.4e+006
1.2e+006
1e+006
800000
600000
400000
200000

0

1.4e+006
1.2e+006
1e+006
800000
600000
400000
200000

0

BMS-Webview 2 (size = 77512)

{

—
i S
5 10 15 20 25 30 35 40
minsupp
frequent —+— regular
free ----x%---- closed —&

T1018D100K (size = 100000)

4 6 8 10 12 14 16 18 20

minsupp

frequent —+— regular ¥
free - closed —&

Experimental results: orderings and execution time

mushroom (size = 8124)

250000
200000
@
H
§ 150000
S
& 100000
£
5
-4
50000
0
20 40 60 80 100
minsupp
regular-random —+— regular -
regular-inverse --------
pumsb (size = 49046)
O
100
8
o
; \\
§ 10 - \
a
k)
w

1
24000 26000 28000 30000 32000 34000
minsupp

regular —+— closed+free ----x---- closed ¥

26/27

Conclusion and future work

Contribution:

> regular itemsets as an easy-to-understand concise
representation

» RegularMine to mine frequent regular itemsets

27/27

Conclusion and future work

Contribution:

> regular itemsets as an easy-to-understand concise
representation

» RegularMine to mine frequent regular itemsets

Future work:

» pushing RegularMine inside closed and free itemsets
extraction

» use of regular itemsets in non-redundant association rules and
in case studies

27/27

	Motivation
	Concise representation of frequent itemsets

