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Motivation

Concise representations of frequent itemsets:

» alleviate the problems due to extracting, storing and
post-processing a huge amount of frequent patterns.

> closed, free (4+ negative border), non-derivable, disjunctive, ...
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Motivation

Concise representations of frequent itemsets:

» alleviate the problems due to extracting, storing and
post-processing a huge amount of frequent patterns.

> closed, free (4+ negative border), non-derivable, disjunctive, ...

» through a compact, lossless representation, where itemsets
whose support is derivable from others are pruned away

» at the cost of sacrificing readability and direct interpretability
by a data analyst!
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transaction
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[ dab dac || dbc | [ bac |

|da || do | [ dc |(ba)(bc)

o

What itemsets are represented by abcd?
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Contribution

Problem: itemsets represented by a closed itemset (its semantics)
are not derivable from it in isolation.
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are not derivable from it in isolation.

Contribution: an extension of itemsets, called regular, with an
immediate semantics and interpretability, and a conciseness
comparable to closed itemsets.
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Basic definitions

set of items 7
> transaction (tid, X) with X C T
» cover(l) = {tid | (tid,X) e D,X C I}
» support(l) = |cover(l)].
> frequent itemsets F = {X C Z | support(X) > minsupp}.

5/27



Basic definitions

set of items 7

> transaction (tid, X) with X C T

> cover(l) = {tid | (tid,X) e D,X C I}

» support(l) = |cover(l)].

> frequent itemsets F = {X C Z | support(X) > minsupp}.
f-equivalence

» relation: X@Y if cover(X) = cover(Y).

> classes: [X]={Y CZ| X0Y}.

> closed itemsets Y € CS iff { Y} = max[X] for some X.

> free itemsets Y € FS iff Y € min[X] for some X.
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Extended itemsets: syntax

The set J of extended items is defined as follows:
E::=ala? | {a,...,an}* | {a1,...,ak}"

where a, a;’s are items, h > 0 and k > 0.
An extended itemset is a subset R C 7.
Ex. The intended meaning of ab{cd}* is

{ab, abc, abd, abcd}
The intended meaning of ab?{cd} ™" is

{ac, ad, acd, abc, abd, abcd }
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Extended itemsets: semantics

Semantics se() : J — Pow(Pow(Z)) for extended items :

se(a) {{a}}

se(a?) = {{a},0}
se({a1,...,an}") = {X|XC{a1,...,an}t}
se({ar,..,akt™) = {X| X C{ar,...,ak}, X #0}.

Semantics s() : Pow(J) — Pow(Pow(Z)) for extended itemsets:

s(er,...,en) ={Ujz1...Xi | Xi €s(e),i=1...n}.
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Extended itemsets: semantics

Semantics se() : J — Pow(Pow(Z)) for extended items :

se(a) {{a}}

se(a?) = {{a},0}
se({a1,...,an}") = {X|XC{a1,...,an}t}
se({ar,..,akt™) = {X| X C{ar,...,ak}, X #0}.

Semantics s() : Pow(J) — Pow(Pow(Z)) for extended itemsets:
s(er,...,en) ={Ujz1...Xi | Xi €s(e),i=1...n}.

s() is and-compositional: the meaning of an extended itemset can
be obtained by looking (only) at the meaning of its items!
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Regular itemsets
Ex. Let D = {(1,ab),(2,a)}, and R = ab?. We have:
s(R) = {a, ab} and

cover(a) = {1,2} # {1} = cover(ab)
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Regular itemsets

Ex. Let D = {(1,ab),(2,a)}, and R = ab?. We have:
s(R) = {a, ab} and

cover(a) = {1,2} # {1} = cover(ab)
Extended itemsets are relevant to the FIM problem only when they

denote itemsets with a common cover.

Def. An extended itemset R is said regular if
for every X, Y € s(R) we have that cover(X) = cover(Y).

Other equivalent formulations:
» if s(R) C [X] for some itemset X,
» if for every X, Y € s(R), support(X) = support(Y).
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Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|

where X is any element in s(R).
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Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|
where X is any element in s(R).
Def. A finite set of regular itemsets R is a concise repr. of F if:
(a) Ugrers(R)=F, and
(b) for every pair Ry # R» € R, s(R1) N's(R2) = 0.
How large is a concise representation R?
ICS| < |R]|, but, in practice, |[CS| ~ |R|
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Towards mining a concise representation

| closed i
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Towards mining a concise representation
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Towards mining a concise representation
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Towards mining a concise representation

The (semantics of the) extended itemsets

d{abc}* ba{cd}* bc{ad}*

are not pair-wise disjoint!
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Towards mining a concise representation

The (semantics of the) extended itemsets

d{abc}* ba{cd}* bc{ad}*
are not pair-wise disjoint!

We would like to express

s(ba{cd}*) \ s(d{abc})

and

s(bc{ad}*) \ (s(d{abc}*) U s(bc{ad}™)
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Non-compositional itemsets

Non-compositional items are extended items plus:
E ::={a1,...,an}"
where h > 0, with the following semantics:
se({a1,...,an}") = {X|XC{a,...,an}}.
Since we do expect b & s(b{b} ™), we define:

s'(er,...,en) ={X €s(er,...,en) | XNYCY
for every e; of the form Y™ }.

s’() is not and-compositional.
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Mining a concise representation

Let C be a closed itemset, and Xi,..., X, be its free itemsets.

A concise representation of [C] is provided by
Ni = Xiaxfa s 7Xi117 (C \ Xi)*

fori=1...n.
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Mining a concise representation

Let C be a closed itemset, and Xi,..., X, be its free itemsets.

A concise representation of [C] is provided by
Ni = Xiaxfa s 7Xi117 (C \ Xi)*
fori=1...n.
d{abc}* ba{d} {cd}* bc{d} {ba} {ad}*
Next problem: rewrite Ny,..., N, into a set of equivalent pair-wise

disjoint regular itemsets.
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Mining a concise representation

ba{d}*{cd}*s
bac?

4
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Mining a concise representation

ba{d} {cd}* 4 bc{d} {ba} {ad}*
bac? bc{d} {a} " {ad}* 54
bc{a}~a?
—— 54

bc
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Mining a concise representation

Efigl:ifgli 4 bc{d}{ba} {ad}*
bac? bcijiiﬁ}?{ad} S4
befa} o,
bc
bac? bc
M3

b{ac}*
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Towards mining a concise representation
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Splitting rules

RX,Y™ YNX#0 R.X,Z" ZNX#0
R,X,(Y\X)_ R,X,(Z\X)*
R, 0~ R{a}” a¢R
fail R\ {a?}[{a, X}~ — X*]

R,{a,Y}™ a¢R Y #0

S
R\ {a?}[{a, X} = X, Y* R\{a?}[{a, X} = X ],a, Y~ >

Rewritings implemented as procedure Covering (see paper).
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Splitting rules

cd{ab} {ab}*
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Splitting rules

First partition s’(cd{ab} {ab}*)N{X C T | a & X}

cd{ab} {ab}* S5

cdb?
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Splitting rules

Second partition s'(cd{ab} {ab}*)N{X CZ | ae€ X}

cd{ab}{ab}*
cda{b}~ b?

cdb?
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Splitting rules

cd{ab} {ab}*
cda{b}~ b?

cda

cdb? S4
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Splitting rules

cd{ab} {ab}*
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Merging rules

R R,a
R, a?

M1

R,b,a? R,a

M3
R, {a, b}

R.Y"T R,aY*

M5
R,{a, Y}+

R R YT

Ay M2

R,YT,a? R,a
M4

R,{a, Y}Jr

R,Yt R,ZV,Y*
M6

R {Z, Y}t

Rewritings implemented as procedure Merging (see paper).
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Frequent Regular ltemsets Mining

Algorithm RegularMine

Input: a transactional database D
Output: a set Ry, of frequent regular itemsets that is a concise
representation of frequent itemsets

extract frequent closed itemsets CS from D
and, for each C € CS, the free sets in [C]
Rout 0
for every C € CS do
let Xi,..., X, be the free sets in [C] ordered w.r.t. <
R = Uj=1...nCovering(X;, X{ ,..., X_;,C*) // rules S1 — S5
Rout — Rout U Merging(R) // rules M1 — M6
end for
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Nondeterminism

Nondeterminism |: The splitting and merging rules are
non-deterministic. The procedures Covering and Merging adopt a
few heuristics to drive the rewriting.
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Nondeterminism |: The splitting and merging rules are
non-deterministic. The procedures Covering and Merging adopt a
few heuristics to drive the rewriting.

Nondeterminism II: The order Xi, ..., X, affects the (size of the)
output.

We (experimentally) resort to [Dong et al. 2005]:

Def. X; < )<J iff ’X,‘ < ‘)@’ or, X,‘ = ‘)@’ and Xi <ex )<J
where =g is a lexicographic order induced by a total order items.




Experimental results: dense datasets
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Experimental results: sparse datasets
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Experimental results: orderings and execution time
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Conclusion and future work

Contribution:

> regular itemsets as an easy-to-understand concise
representation

» RegularMine to mine frequent regular itemsets
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Conclusion and future work

Contribution:

> regular itemsets as an easy-to-understand concise
representation

» RegularMine to mine frequent regular itemsets

Future work:

» pushing RegularMine inside closed and free itemsets
extraction

» use of regular itemsets in non-redundant association rules and
in case studies
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