
Frequent Regular Itemset Mining

Salvatore Ruggieri

Dipartimento di Informatica, Università di Pisa,
Largo B. Pontecorvo 3, 56127 Pisa, Italy

ruggieri@di.unipi.it

ACM SIGKDD 2010 - Washington DC, USA

1/27

ruggieri@di.unipi.it

Motivation

Concise representations of frequent itemsets:

I alleviate the problems due to extracting, storing and
post-processing a huge amount of frequent patterns.

I closed, free (+ negative border), non-derivable, disjunctive, . . .

2/27

Motivation

Concise representations of frequent itemsets:

I alleviate the problems due to extracting, storing and
post-processing a huge amount of frequent patterns.

I closed, free (+ negative border), non-derivable, disjunctive, . . .

I through a compact, lossless representation, where itemsets
whose support is derivable from others are pruned away

2/27

Motivation

Concise representations of frequent itemsets:

I alleviate the problems due to extracting, storing and
post-processing a huge amount of frequent patterns.

I closed, free (+ negative border), non-derivable, disjunctive, . . .

I through a compact, lossless representation, where itemsets
whose support is derivable from others are pruned away

I at the cost of sacrificing readability and direct interpretability

by a data analyst!

2/27

Motivation

tid transaction

1 abcde

2 abcd

3 b

4 ac

cover support closed free

{1, 2} 2 abcd d ba bc

{1, 2, 3} 3 b b

{1, 2, 4} 3 ac a c

abcd

d

ba bc

dac

da db dc

dab dbc bac

free closedfrequent

3/27

Motivation

tid transaction

1 abcde

2 abcd

3 b

4 ac

cover support closed free

{1, 2} 2 abcd d ba bc

{1, 2, 3} 3 b b

{1, 2, 4} 3 ac a c

abcd

d

ba bc

dac

da db dc

dab dbc bac

free closedfrequent

What itemsets are represented by abcd?

3/27

Motivation

tid transaction

1 abcde

2 abcd

3 b

4 ac

cover support closed free

{1, 2} 2 abcd d ba bc

{1, 2, 3} 3 b b

{1, 2, 4} 3 ac a c

abcd

d

ba bc

dac

da db dc

dab dbc bac

free closedfrequent

What itemsets are represented by abcd?

Pow(abcd) \
⋃

Y∈CS,support(Y)>support(abcd)

Pow(Y)

3/27

Contribution

Problem: itemsets represented by a closed itemset (its semantics)
are not derivable from it in isolation.

4/27

Contribution

Problem: itemsets represented by a closed itemset (its semantics)
are not derivable from it in isolation.

Contribution: an extension of itemsets, called regular, with an
immediate semantics and interpretability, and a conciseness
comparable to closed itemsets.

4/27

Contribution

Problem: itemsets represented by a closed itemset (its semantics)
are not derivable from it in isolation.

Contribution: an extension of itemsets, called regular, with an
immediate semantics and interpretability, and a conciseness
comparable to closed itemsets.

abcd

d

ba bc

dac

da db dc

dab dbc bac

d{abc}*

b{ac}+

free closedfrequent

4/27

Basic definitions

set of items I

I transaction (tid , X) with X ⊆ I

I cover(I) = {tid | (tid , X) ∈ D, X ⊆ I}

I support(I) = |cover(I)|.

I frequent itemsets F = {X ⊆ I | support(X) ≥ minsupp}.

5/27

Basic definitions

set of items I

I transaction (tid , X) with X ⊆ I

I cover(I) = {tid | (tid , X) ∈ D, X ⊆ I}

I support(I) = |cover(I)|.

I frequent itemsets F = {X ⊆ I | support(X) ≥ minsupp}.

θ-equivalence

I relation: XθY if cover(X) = cover(Y).

I classes: [X] = {Y ⊆ I | XθY }.

I closed itemsets Y ∈ CS iff {Y } = max [X] for some X .

I free itemsets Y ∈ FS iff Y ∈ min[X] for some X .

5/27

Extended itemsets: syntax

The set J of extended items is defined as follows:

E ::= a | a? | {a1, . . . , ah}
? | {a1, . . . , ak}

+

where a, ai ’s are items, h ≥ 0 and k > 0.

An extended itemset is a subset R ⊆ J .

Ex. The intended meaning of ab{cd}? is

{ab, abc, abd , abcd}

The intended meaning of ab?{cd}+ is

{ac , ad , acd , abc, abd , abcd}

6/27

Extended itemsets: semantics

Semantics se() : J → Pow(Pow(I)) for extended items :

se(a) = {{a}}

se(a?) = {{a}, ∅}

se({a1, . . . , ah}
?) = {X | X ⊆ {a1, . . . , ah}}

se({a1, . . . , ak}
+) = {X | X ⊆ {a1, . . . , ak}, X 6= ∅}.

Semantics s() : Pow(J)→ Pow(Pow(I)) for extended itemsets:

s(e1, . . . , en) = { ∪ i=1...nXi | Xi ∈ s(ei), i = 1 . . . n}.

7/27

Extended itemsets: semantics

Semantics se() : J → Pow(Pow(I)) for extended items :

se(a) = {{a}}

se(a?) = {{a}, ∅}

se({a1, . . . , ah}
?) = {X | X ⊆ {a1, . . . , ah}}

se({a1, . . . , ak}
+) = {X | X ⊆ {a1, . . . , ak}, X 6= ∅}.

Semantics s() : Pow(J)→ Pow(Pow(I)) for extended itemsets:

s(e1, . . . , en) = { ∪ i=1...nXi | Xi ∈ s(ei), i = 1 . . . n}.

s() is and-compositional: the meaning of an extended itemset can
be obtained by looking (only) at the meaning of its items!

7/27

Regular itemsets

Ex. Let D = {(1, ab), (2, a)}, and R = ab?. We have:
s(R) = {a, ab} and

cover(a) = {1, 2} 6= {1} = cover(ab)

8/27

Regular itemsets

Ex. Let D = {(1, ab), (2, a)}, and R = ab?. We have:
s(R) = {a, ab} and

cover(a) = {1, 2} 6= {1} = cover(ab)

Extended itemsets are relevant to the FIM problem only when they
denote itemsets with a common cover.

8/27

Regular itemsets

Ex. Let D = {(1, ab), (2, a)}, and R = ab?. We have:
s(R) = {a, ab} and

cover(a) = {1, 2} 6= {1} = cover(ab)

Extended itemsets are relevant to the FIM problem only when they
denote itemsets with a common cover.

Def. An extended itemset R is said regular if
for every X , Y ∈ s(R) we have that cover(X) = cover(Y).

8/27

Regular itemsets

Ex. Let D = {(1, ab), (2, a)}, and R = ab?. We have:
s(R) = {a, ab} and

cover(a) = {1, 2} 6= {1} = cover(ab)

Extended itemsets are relevant to the FIM problem only when they
denote itemsets with a common cover.

Def. An extended itemset R is said regular if
for every X , Y ∈ s(R) we have that cover(X) = cover(Y).

Other equivalent formulations:

I if s(R) ⊆ [X] for some itemset X ,

I if for every X , Y ∈ s(R), support(X) = support(Y).

8/27

Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|

where X is any element in s(R).

9/27

Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|

where X is any element in s(R).

Def. A finite set of regular itemsets R is a concise repr. of F if:

(a) ∪ R∈Rs(R) = F , and

(b) for every pair R1 6= R2 ∈ R, s(R1) ∩ s(R2) = ∅.

9/27

Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|

where X is any element in s(R).

Def. A finite set of regular itemsets R is a concise repr. of F if:

(a) ∪ R∈Rs(R) = F , and

(b) for every pair R1 6= R2 ∈ R, s(R1) ∩ s(R2) = ∅.

How large is a concise representation R?

9/27

Regular itemsets: concise representation

For a regular itemset R, we define

cover(R) = cover(X) and support(R) = |cover(R)|

where X is any element in s(R).

Def. A finite set of regular itemsets R is a concise repr. of F if:

(a) ∪ R∈Rs(R) = F , and

(b) for every pair R1 6= R2 ∈ R, s(R1) ∩ s(R2) = ∅.

How large is a concise representation R?

|CS| ≤ |R|, but, in practice, |CS| ≈ |R|

9/27

Towards mining a concise representation

abcd

d

ba bc

dac

da db dc

dab dbc bac

free closedfrequent

10/27

Towards mining a concise representation

abcd

d

ba bc

dac

da db dc

dab dbc bac

d{abc}*

free closedfrequent

11/27

Towards mining a concise representation

abcd

d

ba bc

dac

da db dc

dab dbc bac

ba{cd}*

free closedfrequent

12/27

Towards mining a concise representation

abcd

d

ba bc

dac

da db dc

dab dbc bac

bc{ad}*

free closedfrequent

13/27

Towards mining a concise representation

The (semantics of the) extended itemsets

d{abc}? ba{cd}? bc{ad}?

are not pair-wise disjoint!

14/27

Towards mining a concise representation

The (semantics of the) extended itemsets

d{abc}? ba{cd}? bc{ad}?

are not pair-wise disjoint!

We would like to express

s(ba{cd}?) \ s(d{abc}?)

and

s(bc{ad}?) \ (s(d{abc}?) ∪ s(bc{ad}?)

14/27

Non-compositional itemsets

Non-compositional items are extended items plus:

E ::= {a1, . . . , ah}
−

where h ≥ 0, with the following semantics:

se({a1, . . . , ah}
−) = {X | X ⊂ {a1, . . . , ah}}.

Since we do expect b 6∈ s(b{b}−), we define:

s ′(e1, . . . , en) = {X ∈ s(e1, . . . , en) | X ∩ Y ⊂ Y

for every ei of the form Y−}.

s ′() is not and-compositional.

15/27

Mining a concise representation

Let C be a closed itemset, and X1, . . . ,Xn be its free itemsets.

A concise representation of [C] is provided by

Ni = Xi , X
−

1 , . . . ,X−

i−1, (C \ Xi)
?

for i = 1 . . . n .

16/27

Mining a concise representation

Let C be a closed itemset, and X1, . . . ,Xn be its free itemsets.

A concise representation of [C] is provided by

Ni = Xi , X
−

1 , . . . ,X−

i−1, (C \ Xi)
?

for i = 1 . . . n .

d{abc}? ba{d}−{cd}? bc{d}−{ba}−{ad}?

16/27

Mining a concise representation

Let C be a closed itemset, and X1, . . . ,Xn be its free itemsets.

A concise representation of [C] is provided by

Ni = Xi , X
−

1 , . . . ,X−

i−1, (C \ Xi)
?

for i = 1 . . . n .

d{abc}? ba{d}−{cd}? bc{d}−{ba}−{ad}?

Next problem: rewrite N1, . . . ,Nn into a set of equivalent pair-wise
disjoint regular itemsets.

16/27

Mining a concise representation

ba{d}−{cd}?

bac?
S4

17/27

Mining a concise representation

ba{d}−{cd}?

bac?
S4

bc{d}−{ba}−{ad}?

bc{d}−{a}−{ad}?

bc{a}−a?

bc
S4

S4

S1

17/27

Mining a concise representation

ba{d}−{cd}?

bac?
S4

bc{d}−{ba}−{ad}?

bc{d}−{a}−{ad}?

bc{a}−a?

bc
S4

S4

S1

bac? bc

b{ac}+
M3

17/27

Towards mining a concise representation

abcd

d

ba bc

dac

da db dc

dab dbc bac

d{abc}*

b{ac}+

free closedfrequent

18/27

Splitting rules

R, X , Y− Y ∩ X 6= ∅

R, X , (Y \ X)−
S1

R, X , Z ? Z ∩ X 6= ∅

R, X , (Z \ X)?
S2

R, ∅−

fail
S3

R, {a}− a 6∈ R

R \ {a?}[{a, X}− → X ?]
S4

R, {a, Y }− a 6∈ R Y 6= ∅

R \ {a?}[{a, X}− → X ?], Y ? R \ {a?}[{a, X}− → X−], a, Y−
S5

Rewritings implemented as procedure Covering (see paper).

19/27

Splitting rules

cd{ab}−{ab}?

20/27

Splitting rules

First partition s ′(cd{ab}−{ab}?) ∩ {X ⊆ I | a 6∈ X}

cd{ab}−{ab}?

cdb?

S5

20/27

Splitting rules

Second partition s ′(cd{ab}−{ab}?) ∩ {X ⊆ I | a ∈ X}

cd{ab}−{ab}?

cdb?
cda{b}−b?

S5

20/27

Splitting rules

cd{ab}−{ab}?

cdb?
cda{b}−b?

cda
S4

S5

20/27

Splitting rules

cd{ab}−{ab}?

cdb?
cda{b}−b?

cda
S4

S5

abcd

ab cd

abdabc cda cdb

free closedfrequent

ab{cd}*

cdb?

20/27

Merging rules

R R, a

R, a?
M1

R R, Y +

R, Y ?
M2

R, b, a? R, a

R, {a, b}+
M3

R, Y +, a? R, a

R, {a, Y }+
M4

R, Y + R, a, Y ?

R, {a, Y }+
M5

R, Y + R, Z+, Y ?

R, {Z , Y }+
M6

Rewritings implemented as procedure Merging (see paper).

21/27

Frequent Regular Itemsets Mining

Algorithm RegularMine

Input: a transactional database D
Output: a set Rout of frequent regular itemsets that is a concise

representation of frequent itemsets

extract frequent closed itemsets CS from D
and, for each C ∈ CS, the free sets in [C]

Rout ← ∅
for every C ∈ CS do

let X1, . . . ,Xn be the free sets in [C] ordered w.r.t. �
R = ∪i=1...nCovering(Xi , X

−

1 , . . . ,X−

i−1, C
?) // rules S1− S5

Rout ← Rout ∪Merging(R) // rules M1−M6
end for

22/27

Nondeterminism

Nondeterminism I: The splitting and merging rules are
non-deterministic. The procedures Covering and Merging adopt a
few heuristics to drive the rewriting.

23/27

Nondeterminism

Nondeterminism I: The splitting and merging rules are
non-deterministic. The procedures Covering and Merging adopt a
few heuristics to drive the rewriting.

Nondeterminism II: The order X1, . . . ,Xn affects the (size of the)
output.

23/27

Nondeterminism

Nondeterminism I: The splitting and merging rules are
non-deterministic. The procedures Covering and Merging adopt a
few heuristics to drive the rewriting.

Nondeterminism II: The order X1, . . . ,Xn affects the (size of the)
output.

We (experimentally) resort to [Dong et al. 2005]:

Def. Xi � Xj iff |Xi | < |Xj | or, |Xi | = |Xj | and Xi �lex Xj

where �lex is a lexicographic order induced by a total order items.

23/27

Experimental results: dense datasets

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

 8e+006

 9e+006

 24000 26000 28000 30000 32000 34000

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

pumsb (size = 49046)

frequent
free

regular
closed

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 20 40 60 80 100

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

census (size = 48842)

frequent
free

regular
closed

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 20 40 60 80 100

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

mushroom (size = 8124)

frequent
free

regular
closed

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 800 1000 1200 1400 1600 1800 2000

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

chess (size = 3196)

frequent
free

regular
closed

24/27

Experimental results: sparse datasets

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 28 30 32 34 36 38

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

BMS-Webview 1 (size = 59602)

frequent
free

regular
closed

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 0 5 10 15 20 25 30 35 40 45

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

BMS-Webview 2 (size = 77512)

frequent
free

regular
closed

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 4 6 8 10 12 14 16 18 20

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

T10I4D100K (size = 100000)

frequent
free

regular
closed

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 4 6 8 10 12 14 16 18 20

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

T10I8D100K (size = 100000)

frequent
free

regular
closed

25/27

Experimental results: orderings and execution time

 0

 50000

 100000

 150000

 200000

 250000

 20 40 60 80 100

N
u
m

b
e
r

o
f
it
e
m

s
e
ts

minsupp

mushroom (size = 8124)

regular-random
regular-inverse

regular

 1

 10

 100

 24000 26000 28000 30000 32000 34000

E
la

p
s
e
d
 t
im

e
 (

s
e
c
s
)

minsupp

pumsb (size = 49046)

regular closed+free closed

26/27

Conclusion and future work

Contribution:

I regular itemsets as an easy-to-understand concise
representation

I RegularMine to mine frequent regular itemsets

27/27

Conclusion and future work

Contribution:

I regular itemsets as an easy-to-understand concise
representation

I RegularMine to mine frequent regular itemsets

Future work:

I pushing RegularMine inside closed and free itemsets
extraction

I use of regular itemsets in non-redundant association rules and
in case studies

27/27

	Motivation
	Concise representation of frequent itemsets

