
Ontologies and
Databases

KRDB Research Centre

for Knowledge and Data

Enrico Franconi
Free University of Bozen-Bolzano, Italy

http://www.inf.unibz.it/∼franconi

Kalamaki, 22 May 2012



Summary

◮ What is an Ontology

◮ Querying a DB via an ontology

Ontologies and Databases. E. Franconi. (2/38)



Ontologies and Constraints

◮ An ontology is a formal conceptualisation of the world: a conceptual
schema.

◮ An ontology specifies a set of constraints, which declare what should
necessarily hold in any possible world.

◮ Any possible world should conform to the constraints expressed by the
ontology.

◮ Given an ontology, a legal world description (or legal database
instance) is a finite possible world satisfying the constraints.

Ontologies and Databases. E. Franconi. (3/38)



Ontologies and Conceptual Data Models

◮ An ontology language usually introduces concepts (aka classes,
entities), properties of concepts (aka slots, attributes, roles),
relationships between concepts (aka associations), and additional
constraints.

◮ Ontology languages may be simple (e.g., involving only concepts and
taxonomies), frame-based (e.g., UML, based on concepts, properties,
and binary relationships), or logic-based (e.g. OWL, Description
Logics).

◮ Ontology languages are typically expressed by means of diagrams.

◮ Entity-Relationship schemas and UML class diagrams can be
considered as ontology languages.

Ontologies and Databases. E. Franconi. (4/38)



UML Class Diagram

AreaManager TopManager

Manager Project

ProjectCode:String

Employee

PaySlipNumber:Integer
Salary:Integer

{disjoint,complete}

1..⋆

Works-for

1..1

1..1

Manages

Ontologies and Databases. E. Franconi. (5/38)



Entity-Relationship Schema

Employee

PaySlipNumber(Integer)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)

2

Ontologies and Databases. E. Franconi. (6/38)



The role of an ontology:

an Ontology based application

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Constraints

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Mediator

global

source

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (7/38)



The role of an ontology:

an Ontology based application

Mediator

global

source

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

←− Data Level

←− Information Level

←− Knowledge Level

Ontologies and Databases. E. Franconi. (7/38)



Reasoning

Given an ontology – seen as a collection of constraints – it is possible that
additional constraints can be inferred.

◮ A class is inconsistent if it denotes the empty set in any legal world
description.

◮ A class is a subclass of another class if the former denotes a subset of
the set denoted by the latter in any legal world description.

◮ Two classes are equivalent if they denote the same set in any legal
world description.

◮ A stricter constraint is inferred – e.g., a cardinality constraint – if it
holds in in any legal world description.

◮ . . .

Ontologies and Databases. E. Franconi. (8/38)



Simple reasoning example

Italian English

Person

Lazy LatinLover

{disjoint,covering}

Gentleman Hooligan

{disjoint}

Ontologies and Databases. E. Franconi. (9/38)



Simple reasoning example

Italian English

Person

Lazy LatinLover

{disjoint,covering}

Gentleman Hooligan

{disjoint}

LatinLover = ∅
Italian ⊆ Lazy
Italian ≡ Lazy

Ontologies and Databases. E. Franconi. (9/38)



Reasoning: cute professors

LatinLoverLazy Mafioso ItalianProf

Italian

{disjoint,complete}

{disjoint}

Ontologies and Databases. E. Franconi. (10/38)



Reasoning: cute professors

LatinLoverLazy Mafioso ItalianProf

Italian

{disjoint,complete}

{disjoint}

implies
ItalianProf ⊆ LatinLover

Ontologies and Databases. E. Franconi. (10/38)



Reasoning with ontologies

AreaManager TopManager

Manager Project
ProjectCode:String

Employee
PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..⋆

Works-for

1..1

1..1

Manages

◮ Managers do not work for a project (she/he just manages it):
∀x. Manager(x) → ¬∃y .WORKS-FOR(x , y)
Manager ⊑ ¬∃WORKS-FOR.⊤
Manager ⊆ Employee \ π1WORKS-FOR

Ontologies and Databases. E. Franconi. (11/38)



Reasoning with ontologies

AreaManager TopManager

Manager Project
ProjectCode:String

Employee
PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..⋆

1..⋆

Works-for

1..1

1..1

Manages

◮ Managers do not work for a project (she/he just manages it):
∀x. Manager(x) → ¬∃y .WORKS-FOR(x , y)
Manager ⊑ ¬∃WORKS-FOR.⊤
Manager ⊆ Employee \ π1WORKS-FOR

◮ If the minimum cardinality for the participation of employees to the
works-for relationship is increased, then . . .

Ontologies and Databases. E. Franconi. (11/38)



The democratic company

Employee 6= ∅

Supervisor

Employee

supervises

0..1

2..2

Ontologies and Databases. E. Franconi. (12/38)



The democratic company

Employee 6= ∅

Supervisor

Employee

supervises

0..1

2..2

implies
“the classes Employee and Supervisor necessarily contain an infinite
number of instances”.

Since legal world descriptions are finite possible worlds satisfying the
constraints imposed by the ontology, the ontology is inconsistent.

Ontologies and Databases. E. Franconi. (12/38)



How many numbers?

Natural Number

Even Number

rel

1..1

1..1

Ontologies and Databases. E. Franconi. (13/38)



How many numbers?

Natural Number

Even Number

rel

1..1

1..1

implies
“the classes Natural Number and Even Number contain the same number
of instances”.

Ontologies and Databases. E. Franconi. (13/38)



How many numbers?

Natural Number

Even Number

rel

1..1

1..1

implies
“the classes Natural Number and Even Number contain the same number
of instances”.

Only if the domain is finite: Natural Number ≡ Even Number

Ontologies and Databases. E. Franconi. (13/38)



Next on “Ontologies and Databases”:

◮ What is an Ontology

◮ Querying a DB via an ontology

◮ We will see how an ontology can play the role of a “mediator”
wrapping a (source) database.

◮ Examples will show how apparently simple cases are not easy.
◮ We will learn about view-based query processing with GAV and LAV

mappings.
◮ We introduce the difference between closed world and open world

semantics in this context.
◮ We will see how only the closed world semantics should be used while

using ontologies to wrap databases, in order for the mediated system to
behave like a database (black-box metaphor)

◮ We will see that the data complexity of query answering can be beyond
the one of SQL.

Ontologies and Databases. E. Franconi. (14/38)



The role of an ontology

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Constraints

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Mediator

global

source

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

Ontologies and Databases. E. Franconi. (15/38)



The role of an ontology

Mediator

global

source

Deduction

Query
Result

Deduction

Constraints

Query
Result

Data Store

Logical
Schema

Conceptual
Schema

←− Data Level

←− Information Level

←− Knowledge Level

Ontologies and Databases. E. Franconi. (15/38)



Querying a Database with Constraints

◮ Basic assumption: consistent information with respect to the
constraints introduced by the ontology

◮ A Database with Constraints: complete information about each term
appearing in the ontology

◮ Problem: answer a query over the ontology vocabulary

Ontologies and Databases. E. Franconi. (16/38)



Querying a Database with Constraints

◮ Basic assumption: consistent information with respect to the
constraints introduced by the ontology

◮ A Database with Constraints: complete information about each term
appearing in the ontology

◮ Problem: answer a query over the ontology vocabulary

◮ Solution: use a standard DB technology (e.g., SQL, datalog, etc)

Ontologies and Databases. E. Franconi. (16/38)



Querying a Database with Constraints

Manager

Employee Project1..⋆Works-for

Ontologies and Databases. E. Franconi. (17/38)



Querying a Database with Constraints

Manager

Employee Project1..⋆Works-for

Employee = { John, Mary, Paul }
Manager = { John, Paul }
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-B〉 }
Project = { Prj-A, Prj-B }

Ontologies and Databases. E. Franconi. (17/38)



Querying a Database with Constraints

Manager

Employee Project1..⋆Works-for

Employee = { John, Mary, Paul }
Manager = { John, Paul }
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-B〉 }
Project = { Prj-A, Prj-B }

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ { John }

Ontologies and Databases. E. Franconi. (17/38)



Querying a Database with Constraints

over an extended vocabulary (DBox)

◮ Having a classical database with constraints is against the principle
that an ontology presents a richer vocabulary than the data stores
(i.e., it plays the role of an ontology).

Ontologies and Databases. E. Franconi. (18/38)



Querying a Database with Constraints

over an extended vocabulary (DBox)

◮ Having a classical database with constraints is against the principle
that an ontology presents a richer vocabulary than the data stores
(i.e., it plays the role of an ontology).

◮ A Database with Constraints over an extended vocabulary (or
conceptual schema with exact views, or DBox): complete information
about some term appearing in the ontology

◮ Standard DB technologies do not apply

◮ The query answering problem in this context is inherently complex

Ontologies and Databases. E. Franconi. (18/38)



Querying a Database with Constraints

over an extended vocabulary (DBox)

Manager

Employee Project1..⋆Works-for

Manager = { John, Paul }
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-B〉 }
Project = { Prj-A, Prj-B }

Ontologies and Databases. E. Franconi. (19/38)



Querying a Database with Constraints

over an extended vocabulary (DBox)

Manager

Employee Project1..⋆Works-for

Manager = { John, Paul }
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-B〉 }
Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

Ontologies and Databases. E. Franconi. (19/38)



Querying a Database with Constraints

over an extended vocabulary (DBox)

Manager

Employee Project1..⋆Works-for

Manager = { John, Paul }
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-B〉 }
Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

=⇒ { John, Paul, Mary }

Ontologies and Databases. E. Franconi. (19/38)



Querying a Database with Constraints

over an extended vocabulary (DBox)

Manager

Employee Project1..⋆Works-for

Manager = { John, Paul }
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-B〉 }
Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

=⇒ { John, Paul, Mary }

=⇒ Q’(X) :- Manager(X) ∪ Works-for(X,Y)

Ontologies and Databases. E. Franconi. (19/38)



Andrea’s Example

AreaManagerp TopManagerp

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

Friend

Ontologies and Databases. E. Franconi. (20/38)



Andrea’s Example

AreaManagerp TopManagerp

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

Friend
Employee = { Andrea, Paul, Mary, John }
Manager = { Andrea, Paul, Mary}
AreaManagerp = { Paul }
TopManagerp = { Mary }
Supervised = { 〈John,Andrea〉, 〈John,Mary〉 }
Friend = { 〈Mary,Andrea〉, 〈Andrea,Paul〉 }

Ontologies and Databases. E. Franconi. (20/38)



Andrea’s Example

AreaManagerp TopManagerp

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

Friend
Employee = { Andrea, Paul, Mary, John }
Manager = { Andrea, Paul, Mary}
AreaManagerp = { Paul }
TopManagerp = { Mary }
Supervised = { 〈John,Andrea〉, 〈John,Mary〉 }
Friend = { 〈Mary,Andrea〉, 〈Andrea,Paul〉 }

Paul:AreaManagerp

Andrea:Manager Mary:TopManagerp

John

❄

✛

�
�

��✠

❅
❅
❅❅❘

Supervised Supervised

Friend

Friend

Ontologies and Databases. E. Franconi. (20/38)



Andrea’s Example (cont.)

AreaManagerp TopManagerp

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

Friend

Ontologies and Databases. E. Franconi. (21/38)



Andrea’s Example (cont.)

AreaManagerp TopManagerp

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

Friend

Paul:AreaManagerp

Andrea:Manager Mary:TopManagerp

John

❄

✛

�
�

��✠

❅
❅
❅❅❘

Supervised Supervised

Friend

Friend

Ontologies and Databases. E. Franconi. (21/38)



Andrea’s Example (cont.)

AreaManagerp TopManagerp

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

Friend

Paul:AreaManagerp

Andrea:Manager Mary:TopManagerp

John

❄

✛

�
�

��✠

❅
❅
❅❅❘

Supervised Supervised

Friend

Friend

Q :- Supervised(John,Y), TopManager(Y),

Friend(Y,Z), AreaManager(Z)

Ontologies and Databases. E. Franconi. (21/38)



Andrea’s Example (cont.)

AreaManagerp TopManagerp

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

Friend

Paul:AreaManagerp

Andrea:Manager Mary:TopManagerp

John

❄

✛

�
�

��✠

❅
❅
❅❅❘

Supervised Supervised

Friend

Friend

Q :- Supervised(John,Y), TopManager(Y),

Friend(Y,Z), AreaManager(Z)

=⇒ YES

Ontologies and Databases. E. Franconi. (21/38)



Querying a sound DB with Constraints

over an extended vocabulary (ABox)

1. Classical DB with constraints: complete information about all terms
appearing in the ontology

2. DB with constraints over an extended vocabulary (i.e., conceptual
schema with exact views, or DBox): complete information about
some term appearing in the ontology

3. Sound DB with constraints over an extended vocabulary (aka
conceptual schema with sound views, or ABox): incomplete
information about some term appearing in the ontology

◮ Sound databases with constraints over an extended vocabulary are
crucial in data integration scenarios.

Ontologies and Databases. E. Franconi. (22/38)



Exact vs Sound views

Employee Project1..⋆Works-for

Ontologies and Databases. E. Franconi. (23/38)



Exact vs Sound views

Employee Project1..⋆Works-for

Exact views (DBox):

Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project = { Prj-A, Prj-B }

Ontologies and Databases. E. Franconi. (23/38)



Exact vs Sound views

Employee Project1..⋆Works-for

Exact views (DBox):

Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project = { Prj-A, Prj-B }

=⇒ INCONSISTENT

Ontologies and Databases. E. Franconi. (23/38)



Exact vs Sound views

Employee Project1..⋆Works-for

Exact views (DBox):

Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project = { Prj-A, Prj-B }

=⇒ INCONSISTENT

Sound views (ABox):

Works-for ⊇ { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

Ontologies and Databases. E. Franconi. (23/38)



Querying a sound DB with Constraints

over an extended vocabulary (ABox)

Employee Project1..⋆Works-for

Works-for ⊇ { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

Ontologies and Databases. E. Franconi. (24/38)



Querying a sound DB with Constraints

over an extended vocabulary (ABox)

Employee Project1..⋆Works-for

Works-for ⊇ { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

Q(X) :- Works-for(Y,X)

Ontologies and Databases. E. Franconi. (24/38)



Querying a sound DB with Constraints

over an extended vocabulary (ABox)

Employee Project1..⋆Works-for

Works-for ⊇ { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

Q(X) :- Works-for(Y,X)

=⇒ { Prj-A, Prj-B }

Ontologies and Databases. E. Franconi. (24/38)



Querying a sound DB with Constraints

over an extended vocabulary (ABox)

Employee Project1..⋆Works-for

Works-for ⊇ { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

Q(X) :- Works-for(Y,X)

=⇒ { Prj-A, Prj-B }

=⇒ Q’(X) :- Project(X) ∪ Works-for(Y,X)

Ontologies and Databases. E. Franconi. (24/38)



DBox vs ABox
Employee ProjectWorks-for

◮ Additional constraint as a standard view over the data:
Bad-Project = Project \ π2Works-for

∀x. Bad-Project(x)↔ Project(x)∧¬∃y.Works-for(y,x)
Bad-Project = Project⊓¬∃Works-for−.⊤

Ontologies and Databases. E. Franconi. (25/38)



DBox vs ABox
Employee ProjectWorks-for

◮ Additional constraint as a standard view over the data:
Bad-Project = Project \ π2Works-for

∀x. Bad-Project(x)↔ Project(x)∧¬∃y.Works-for(y,x)
Bad-Project = Project⊓¬∃Works-for−.⊤

◮ DBox:
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project = { Prj-A, Prj-B }

◮ Q(X) :- Bad-Project(X)

◮ ABox:
Works-for ⊇ { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

◮ Q(X) :- Bad-Project(X)

Ontologies and Databases. E. Franconi. (25/38)



DBox vs ABox
Employee ProjectWorks-for

◮ Additional constraint as a standard view over the data:
Bad-Project = Project \ π2Works-for

∀x. Bad-Project(x)↔ Project(x)∧¬∃y.Works-for(y,x)
Bad-Project = Project⊓¬∃Works-for−.⊤

◮ DBox:
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project = { Prj-A, Prj-B }

◮ Q(X) :- Bad-Project(X)

=⇒ { Prj-B }
◮ ABox:

Works-for ⊇ { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

◮ Q(X) :- Bad-Project(X)

Ontologies and Databases. E. Franconi. (25/38)



DBox vs ABox
Employee ProjectWorks-for

◮ Additional constraint as a standard view over the data:
Bad-Project = Project \ π2Works-for

∀x. Bad-Project(x)↔ Project(x)∧¬∃y.Works-for(y,x)
Bad-Project = Project⊓¬∃Works-for−.⊤

◮ DBox:
Works-for = { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project = { Prj-A, Prj-B }

◮ Q(X) :- Bad-Project(X)

=⇒ { Prj-B }
◮ ABox:

Works-for ⊇ { 〈John,Prj-A〉, 〈Mary,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

◮ Q(X) :- Bad-Project(X)

=⇒ { } does not scale down to standard DB answer!

Ontologies and Databases. E. Franconi. (25/38)



Compositionality of Queries

Employee Project1..⋆Works-for

◮ ABox:
Works-for ⊇ { 〈John,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

Ontologies and Databases. E. Franconi. (26/38)



Compositionality of Queries

Employee Project1..⋆Works-for

◮ ABox:
Works-for ⊇ { 〈John,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

◮ Query as a standard view over the data:

Q(X) :- Works-for(Y,X) Q = π2Works-for

Ontologies and Databases. E. Franconi. (26/38)



Compositionality of Queries

Employee Project1..⋆Works-for

◮ ABox:
Works-for ⊇ { 〈John,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

◮ Query as a standard view over the data:

Q(X) :- Works-for(Y,X) Q = π2Works-for

◮ Q = EVAL(π2Works-for)

◮ Q = π2(EVAL(Works-for))

Ontologies and Databases. E. Franconi. (26/38)



Compositionality of Queries

Employee Project1..⋆Works-for

◮ ABox:
Works-for ⊇ { 〈John,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

◮ Query as a standard view over the data:

Q(X) :- Works-for(Y,X) Q = π2Works-for

◮ Q = EVAL(π2Works-for)
=⇒ { Prj-A, Prj-B }

◮ Q = π2(EVAL(Works-for))

Ontologies and Databases. E. Franconi. (26/38)



Compositionality of Queries

Employee Project1..⋆Works-for

◮ ABox:
Works-for ⊇ { 〈John,Prj-A〉 }
Project ⊇ { Prj-A, Prj-B }

◮ Query as a standard view over the data:

Q(X) :- Works-for(Y,X) Q = π2Works-for

◮ Q = EVAL(π2Works-for)
=⇒ { Prj-A, Prj-B }

◮ Q = π2(EVAL(Works-for))
=⇒ { Prj-A }

Queries are not compositional wrt certain answer semantics!

Ontologies and Databases. E. Franconi. (26/38)



Complexity of Query answering

Region Colourhas-colour1..⋆

has-border

◮ DBox:

Region = {Italy,France,. . .}; has-border = {〈Italy,France〉,. . .};
Colour = { Red, Green, Blue }

Ontologies and Databases. E. Franconi. (27/38)



Complexity of Query answering

Region Colourhas-colour1..⋆

has-border

◮ DBox:

Region = {Italy,France,. . .}; has-border = {〈Italy,France〉,. . .};
Colour = { Red, Green, Blue }

◮ Q :- has-colour(R1,C), has-colour(R2,C), has-border(R1,R2)

Is it unavoidable that there are two adjacent regions with the same colour?

Ontologies and Databases. E. Franconi. (27/38)



Complexity of Query answering

Region Colourhas-colour1..⋆

has-border

◮ DBox:

Region = {Italy,France,. . .}; has-border = {〈Italy,France〉,. . .};
Colour = { Red, Green, Blue }

◮ Q :- has-colour(R1,C), has-colour(R2,C), has-border(R1,R2)

Is it unavoidable that there are two adjacent regions with the same colour?

◮ YES: in any legal database (i.e., an assignment of colours to regions)
there are at least two adjacent regions with the same colour.

Ontologies and Databases. E. Franconi. (27/38)



Complexity of Query answering

Region Colourhas-colour1..⋆

has-border

◮ DBox:

Region = {Italy,France,. . .}; has-border = {〈Italy,France〉,. . .};
Colour = { Red, Green, Blue }

◮ Q :- has-colour(R1,C), has-colour(R2,C), has-border(R1,R2)

Is it unavoidable that there are two adjacent regions with the same colour?

◮ YES: in any legal database (i.e., an assignment of colours to regions)
there are at least two adjacent regions with the same colour.

◮ NO: there is at least a legal database (i.e., an assignment of colours to
regions) in which no two adjacent regions have the same colour.

Ontologies and Databases. E. Franconi. (27/38)



Complexity of Query answering

Region Colourhas-colour1..⋆

has-border

◮ DBox:

Region = {Italy,France,. . .}; has-border = {〈Italy,France〉,. . .};
Colour = { Red, Green, Blue }

◮ Q :- has-colour(R1,C), has-colour(R2,C), has-border(R1,R2)

Is it unavoidable that there are two adjacent regions with the same colour?

◮ YES: in any legal database (i.e., an assignment of colours to regions)
there are at least two adjacent regions with the same colour.

◮ NO: there is at least a legal database (i.e., an assignment of colours to
regions) in which no two adjacent regions have the same colour.

◮ With ABox semantics the answer is always NO, since there is at least a
legal database (i.e., an assignment of colours to regions) with enough
distinct colours so that no two adjacent regions have the same colour.

Ontologies and Databases. E. Franconi. (27/38)



Complexity of Query answering

Region Colourhas-colour1..⋆

has-border

◮ DBox:

Region = {Italy,France,. . .}; has-border = {〈Italy,France〉,. . .};
Colour = { Red, Green, Blue }

◮ Q :- has-colour(R1,C), has-colour(R2,C), has-border(R1,R2)

Is it unavoidable that there are two adjacent regions with the same colour?

◮ YES: in any legal database (i.e., an assignment of colours to regions)
there are at least two adjacent regions with the same colour.

◮ NO: there is at least a legal database (i.e., an assignment of colours to
regions) in which no two adjacent regions have the same colour.

◮ With ABox semantics the answer is always NO, since there is at least a
legal database (i.e., an assignment of colours to regions) with enough
distinct colours so that no two adjacent regions have the same colour.

Query answering with DBoxes is co-np-hard in data complexity (3-col),
and it is strictly harder than with ABoxes!

Ontologies and Databases. E. Franconi. (27/38)



View based Query Processing

◮ Mappings between the ontology terms and the information source
terms are not necessarily atomic.

◮ Mappings can be given in terms of a set of sound (or exact) views:

◮ GAV (global-as-view): sound (or exact) views over the information
source vocabulary are associated to terms in the ontology

◮ both the DB and the partial DB assumptions are special cases of GAV
◮ an ER schema can be easily mapped to its corresponding relational

schema in some normal form via a GAV mapping

◮ LAV (local-as-view): a sound or exact view over the ontology
vocabulary is associated to each term in the information source;

◮ GLAV: mix of the above.

◮ It is non-trivial, even in the pure GAV setting - which is wrongly
believed to be computable by simple view unfolding.

◮ It is mostly studied with sound views, due to the negative complexity
results with exact views discussed before.

Ontologies and Databases. E. Franconi. (28/38)



Sound GAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

Ontologies and Databases. E. Franconi. (29/38)



Sound GAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

Ontologies and Databases. E. Franconi. (29/38)



Sound GAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

Employee(X) :- 1-Employee(X,Y,false)

Manager(X) :- 1-Employee(X,Y,true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

Ontologies and Databases. E. Franconi. (29/38)



Sound GAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

Employee(X) :- 1-Employee(X,Y,false)

Manager(X) :- 1-Employee(X,Y,true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

Q(X) :- Employee(X)

Ontologies and Databases. E. Franconi. (29/38)



Sound GAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

Employee(X) :- 1-Employee(X,Y,false)

Manager(X) :- 1-Employee(X,Y,true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

Q(X) :- Employee(X)

=⇒ Q’(X) :- 1-Employee(X,Y,Z) ∪ 2-Works-for(X,W)

Ontologies and Databases. E. Franconi. (29/38)



Sound GAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

Employee(X) :- 1-Employee(X,Y,false)

Manager(X) :- 1-Employee(X,Y,true)

Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)

Salary(X,Y) :- 1-Employee(X,Y,Z)

Q(X) :- Employee(X)

=⇒ Q’(X) :- 1-Employee(X,Y,Z) ∪ 2-Works-for(X,W) ← not coming from
unfolding!

Ontologies and Databases. E. Franconi. (29/38)



Sound LAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

Ontologies and Databases. E. Franconi. (30/38)



Sound LAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

Ontologies and Databases. E. Franconi. (30/38)



Sound LAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)

Ontologies and Databases. E. Franconi. (30/38)



Sound LAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

Ontologies and Databases. E. Franconi. (30/38)



Sound LAV mapping

Manager

Employee
PaySlipNumber:Integer

Salary:Integer

Project
ProjectCode:String

1..⋆Works-for

1-Employee(PaySlipNumber,Salary,ManagerP)

2-Works-for(PaySlipNumber,ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ Q’(X) :- 1-Employee(X,Y,true), 2-Works-for(X,Z)

Ontologies and Databases. E. Franconi. (30/38)



Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager Project
ProjectCode:String

Employee
PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..⋆

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ¬∃y . WORKS-FOR(x , y)

Manager ⊑ ¬∃WORKS-FOR.⊤

Manager ⊆ Employee \ π1WORKS-FOR

Ontologies and Databases. E. Franconi. (31/38)



Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager Project
ProjectCode:String

Employee
PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..⋆

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ¬∃y . WORKS-FOR(x , y)

Manager ⊑ ¬∃WORKS-FOR.⊤

Manager ⊆ Employee \ π1WORKS-FOR

; INCONSISTENT QUERY!

Ontologies and Databases. E. Franconi. (31/38)



Summary

◮ Logic and Conceptual Modelling

◮ Queries with an Ontology

◮ Determinacy

Ontologies and Databases. E. Franconi. (32/38)



Determinacy (implicit definability)

A query Q over a DBox is implicitly definable under constraints if its
extension is fully determined by the extension of the DBox relations, and it
does not depend on the non-DBox relations appearing in the constraints.

Checking implicit definability under first-order logic constraints of a query
over a DBox can be reduced to classical entailment.

Ontologies and Databases. E. Franconi. (33/38)



Determinacy (implicit definability)

A query Q over a DBox is implicitly definable under constraints if its
extension is fully determined by the extension of the DBox relations, and it
does not depend on the non-DBox relations appearing in the constraints.

Checking implicit definability under first-order logic constraints of a query
over a DBox can be reduced to classical entailment.

Definition (Implicit definability)

Let DBi and DBj be any two legal databases of the constraints T which
agree on the extension of the DBox relations.
A query Q is implicitly definable from the DBox relations under the
constraints T iff the answer of Q over DBi is the same as the answer of
Q over DBj .

Ontologies and Databases. E. Franconi. (33/38)



Rewriting - or explicit definability

◮ If a query is implicitly definable, it is possible to find an equivalent
reformulation of the query using only relations in the DBox. This is
its explicit definition.

◮ It has been shown that under general first-order logic constraints,
whenever a query is implicitly definable then it is explicitly definable
in a constructive way as a first-order query.

Ontologies and Databases. E. Franconi. (34/38)



Example

Manager Clerk

Employee

{disjoint,complete}

Ontologies and Databases. E. Franconi. (35/38)



Example

Manager Clerk

Employee

{disjoint,complete}

◮ Q(x) :- Clerk(x)
is determined by the extension of the DBox
relations under the constraints

Ontologies and Databases. E. Franconi. (35/38)



Example

Manager Clerk

Employee

{disjoint,complete}

◮ Q(x) :- Clerk(x)
is determined by the extension of the DBox
relations under the constraints

◮ Q(x) :- Clerk(x)
is equivalent to
Q ′(x) :- Employee(x) ∧ ¬Manager(x)

Ontologies and Databases. E. Franconi. (35/38)



The query rewriting under constraints

process

1. Check whether the database is consistent with respect to the
constraints and, if so,

2. check whether the answer to the original query under first-order
constraints is solely determined by the extension of the DBox
relations and, if so,

3. find an equivalent (first-order) rewriting of the query in terms of the
DBox relation.

4. It is possible to pre-compute all the rewritings of all the determined
relations as SQL relational views, and to allow arbitrary SQL queries
on top of them: the whole system is deployed at run time as a
standard SQL relational database.

Ontologies and Databases. E. Franconi. (36/38)



Domain independence & range-restricted

rewritings

I cheated so far! ,

Ontologies and Databases. E. Franconi. (37/38)



Domain independence & range-restricted

rewritings

I cheated so far! ,

Unless the rewriting is a domain independent (e.g., a range-restricted)
first-order logic formula, it can not be expressed in relational algebra or
SQL!

Ontologies and Databases. E. Franconi. (37/38)



Domain independence & range-restricted

rewritings

I cheated so far! ,

Unless the rewriting is a domain independent (e.g., a range-restricted)
first-order logic formula, it can not be expressed in relational algebra or
SQL!

◮ We prove general conditions on the constraints and the query in order
to guarantee that the rewriting is domain independent

◮ All the typical database constraints (e.g., TGDs and EGDs) satisfy
those conditions

◮ All the ontology languages in the guarded fragment satisfy those
conditions

Ontologies and Databases. E. Franconi. (37/38)



Conclusions

Ontologies and Databases. E. Franconi. (38/38)



Conclusions

Do you want to exploit ontology knowledge
(i.e., constraints or an ontology)
in your data intensive application?

Ontologies and Databases. E. Franconi. (38/38)



Conclusions

Do you want to exploit ontology knowledge
(i.e., constraints or an ontology)
in your data intensive application?

Pay attention!

TURGIA Made with LATEX2e

Ontologies and Databases. E. Franconi. (38/38)




