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 where the customers could be described by feature  
vectors, e.g., (gender, age, place of birth, has children, …) 

Label Ranking – An Example 
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Label Ranking – An Example 

1 2 3 

2 3 1 

3 2 1 

𝜋(𝑖) = position of the 𝑖-th label in the ranking  
 

1: 2: 3: 

? ? ? 
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Label Ranking 

Given: 

• a set of training instances *𝒙1, … , 𝒙𝑛+ ⊆ X 

• a set of labels Y = *𝑦1, … , 𝑦𝑚+ 

• for each training instance 𝒙𝑘: a set of pairwise preferences of the 
form 𝑦𝑖 ≻𝒙𝑘 𝑦𝑗 (for some of the labels) 

 

Find: 

• A ranking function (X → Ω mapping) that maps each 𝒙 ∈ X to a 
ranking ≻𝒙 of Y (permutation 𝜋𝒙) and generalizes well in terms of 
a loss function on rankings 
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usnews.com 
laptoplogic.com 

To train a learner that is able to say 
“I don’t know”. 

Learning with Reject Option 
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From Total to Partial Order Relations 

incomparable 

Partial abstention:  
The target is a total order, and a predicted partial order expresses 
incomplete knowledge about the target . 
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B 

A 

D 

C 

complete abstention 



only rely on most confident comparisons  thresholding the relation 

A B C D 

A 0.3 0.8 0.4 

B 0.7 0.9 0.7 

C 0.2 0.1 0.7 

D 0.6 0.3 0.3 

A B C D 

A  0 1 0 

B 1 1 1 

C 0 0 1 

D 1 0 0 

thresholding at 0.5 

Partial Orders from Pairwise Comparisons 

D 

A 

C B Inconsistent! 

P(A, D) 
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A B C D 

A 0.3 0.8 0.4 

B 0.7 0.9 0.7 

C 0.2 0.1 0.7 

D 0.6 0.3 0.3 

A B C D 

A  0 0 0 

B 0 0 0 

C 0 0 0 

D 0 0 0 

D 

A 

C B 

thresholding at 1 

only rely on most confident comparisons  thresholding the relation 

Partial Orders from Pairwise Comparisons 

complete abstention 
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A B C D 

A 0.3 0.8 0.4 

B 0.7 0.9 0.7 

C 0.2 0.1 0.7 

D 0.6 0.3 0.3 

A B C D 

A  0 1 0 

B 1 1 1 

C 0 0 1 

D 0 0 0 

thresholding at 0.6 

D 

A 

C B 
Consistent, but not a 
partial order! 

only rely on most confident comparisons  thresholding the relation 

Partial Orders from Pairwise Comparisons 
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• Problem: Given a (valued) relation P, find the smallest threshold 𝑞 
such that the transitive closure of P𝑞 defines a proper partial order. 

 
     maximally informative and consistent prediction 

 

 

• There is an 𝑂(𝑚3) algorithm for this problem, with 𝑚 the number 
of labels [Cheng et al., ECMLPKDD2010]. 

 

Partial Orders from Pairwise Comparisons 

10/23 



Our Ideas & Results 

• We make use of label ranking methods that produce probability 
distributions 𝐏 over the ranking space Ω. 

 

• We show that thresholding pairwise preferences induced by certain 
distributions yields partial order relations. 

Can we restrict P(⋅,⋅) to exclude the possibility of cycles 
and violations of transitivity from the very beginning? 
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The Plackett-Luce Model 

… is a multistage model specified by a vector 𝒗 = 𝑣1, … , 𝑣𝑚 ∈ R+
𝑚: 

 

𝐏 𝜋  𝒗 = 
𝑣𝜋(𝑖)

𝑣𝜋 𝑖 + 𝑣𝜋 𝑖+1 +⋯+ 𝑣𝜋 𝑚

𝑚

𝑖=1

 

 

 

A ranking is produced by choosing labels one by one, with a 
probability proportional to their respective “skills”. 
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𝐏(                        ) 

The Plackett-Luce Model 

v    = 10, v    = 6, v    = 4 
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v    = 10, v    = 6, v    = 4 

The Plackett-Luce Model 

𝐏                         =  
6

20
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v    = 10, v    = 6, v    = 4 

The Plackett-Luce Model 

𝐏                         =  
6

20
×
10

14
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v    = 10, v    = 6, v    = 4 

The Plackett-Luce Model 

𝐏                         =  
6

20
×
10

14
×
4

4
 

              

             =
3

14
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The Mallows Model 

… is a distance-based model from the exponential family: 

 

𝐏 𝜋  𝜋0, 𝜃 =
exp(−𝜃 Δ(𝜋, 𝜋0))

𝜙(𝜃)
 

  

where Δ(⋅,⋅) is a (right-invariant) metric on rankings. 

 

 

 
The probability of a ranking is higher if it is close to the mode, 

i.e., the center ranking of the distribution. 

center ranking spread normalization constant 
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Some Common Choices of Δ 

• Kendall’s tau 

 T 𝜋, 𝜎  =    𝜋 𝑖 − 𝜋 𝑗 ⋅ 𝜎 𝑖 − 𝜎 𝑗 < 0𝑖<𝑗  

 

• Spearman’s rho 

 R 𝜋, 𝜎  =   𝜋 𝑖 − 𝜎 𝑗
2

𝑖  

 

• Spearman’s footrule 

 F 𝜋, 𝜎  =      𝜋 𝑖 − 𝜎 𝑗  𝑖  

 

• Hamming 

 H 𝜋, 𝜎  =     𝜋 𝑖 ≠ 𝜎 𝑖𝑖  

 

For example:  
 
𝜋 = 1 2 3 4 , 𝜎 = 1 4 2 3  

 
T 𝜋, 𝜎 = 2 
R 𝜋, 𝜎 = 2.45 
F 𝜋, 𝜎 = 4 
H 𝜋, 𝜎 = 3  
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Transposition Property 

Definition A distance Δ is said to have the transposition property iff  
Δ 𝜋, 𝜎 ≤ Δ 𝜋′, 𝜎  

for any 𝜋, 𝜎 ∈ Ω and 𝑖, 𝑗 such that  

𝜋 𝑖 < 𝜋(𝑗) and 𝜎 𝑖 < 𝜎(𝑗).  

Here 𝜋′ is a ranking identical to 𝜋, except for a transposition of 𝑖 and 𝑗. 

 

 

 

 

Kendall’s tau 
 

Spearman’s rho 
 

Spearman’s footrule  
 

Hamming 
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Remarks on 𝐏(𝑦𝑖 ≻ 𝑦𝑗) 

𝐏 𝑦𝑖 ≻ 𝑦𝑗 =  𝐏(𝜋)

𝜋 ∈ E 𝑦𝑖 , 𝑦𝑗

 

e.g., for Y = 𝑦1, 𝑦2, 𝑦3 , E y1, y2 =  

y1 ≻ 𝑦2 ≻ 𝑦3,
𝑦1 ≻ 𝑦3 ≻ 𝑦2,
y3 ≻ 𝑦1 ≻ 𝑦2

 . 

 

 

linear extensions of 𝑦𝑖 ≻ 𝑦𝑗 

 
 
 
 

Model 𝐏 𝑦𝑖 ≻ 𝑦𝑗  

Plackett-Luce 
𝑣𝑖
𝑣𝑖 + 𝑣𝑗

 

Mallows with Spearman’s rho 
1

1 + exp −2𝜃 ⋅ 𝜋0 𝑗 − 𝜋0 𝑖  
 

Mallows with Kendall’s tau 
exp 𝜃 ⋅ 𝜋0 𝑗 − 𝜋0 𝑖 > 0

1 + exp 𝜃
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Our Main Result 

Let the preference relation P be given by a probability distribution 𝐏 

on Ω, that is P 𝑦𝑖 , 𝑦𝑗 = 𝐏(𝑦𝑖 ≻ y𝑗).  

 

 

 

Theorem Let 𝐏 be 

(1) the Plackett-Luce model or 

(2) the Mallows model with a distance Δ having the 
transposition property. 

Moreover, let Q be the thresholded relation  

Q 𝑦𝑖 , 𝑦𝑗 = 1 if P 𝑦𝑖 , 𝑦𝑗 > 𝑞 and  

Q 𝑦𝑖 , 𝑦𝑗 = 0 otherwise. 

Then Q defines a proper partial order relation for all 𝑞 ∈ ,1 2 , 1). 
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Experimental Results 

• Results on the UCI benchmark data set VOWEL;  
 

• Correctness (measured by gamma rank correlation): 

 
|concordant pairs|−|discordant pairs|

concordant pairs +|discordant pairs|
 

 

• Completeness: 1 − the relative number of pairwise comparisons on 
which the model abstains. 
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Take-Away Messages 
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• A natural way to derive partial orders is via thresholding a (valued) 
binary preference relation. 
 

• While this may yield inconsistencies in general, we have shown that 
proper partial orders are produced when restricting to preference 
relations induced by specific types of probability distributions on 
rankings.  

 

• This approach is not only theoretically sound, but also performs well 
in experimental studies.  

 

• While our focus was on label ranking, the results immediately apply 
to other ranking problems, too.  
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The statisticians, like the artists, have a bad habit 
of falling in love with their models.  


