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Setting

 Output: A policy                mapping state on 
action 

 Input: A weak expert
✗ Does not know how to solve the problem globally
✗ Does not know what is good locally
✔ Given two behaviors he is able to prefer one of them

RL : forcluded as no reward available 

IRL: forcluded as insufficient expertise
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 Context: Swarm robotics

 Requirements on approach: run on-board
 Using only internal robot sensors (no ground truth)
 Avoid reality gap due to using simulators

Motivations
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 Handcraft a reward function 
 Maximize 

 Natural to define in some applications (episodic 
games: win or lose)

 Issues with high dimensional continuous 
state/action spaces (robot  sensory-motor data) 

State of art (1/2)
Reinforcement Learning [Sutton & Barto 98]
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Issues in RL
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?

How to define the reward?

 Hint: +1 at the green zone raises difficulties (partial observability)
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 Principle 
 An expert demonstrates some near-optimal trajectories

 Used to get the underlying reward, then policy

 Many learning options (what, how)
 But requires near-optimal trajectories

 Our case: Not even good-enough trajectories
 Many degrees of freedom

 Robot swarm

State of art (2/2)
Apprenticeship Learning [Abbeel & Ng 04]
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Issues in IRL

How to demonstrate an optimal policy to a swarm?

 The dots on the floor are Epucks robots

Liu & Winfield 2010



Preference-based Policy Learning Riad Akrour, Marc Schoenauer and Michèle Sebag 8

 Iterate
 ExpertExpert: expresses preferences over demonstrated 

policies

 RobotRobot: learns a policy return estimate (PRE) from 
Expert preferences

 RobotRobot: self-trains by optimizing PRE + an PRE + an 
exploration termexploration term, to demonstrate a new policy

Preference-based Policy Learning
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 Background

 Preference-based Policy learningPreference-based Policy learning
 Learning the PRE

 Exploration/Exploitation dilemma

 Self-training

 Overview of Algorithm

 Experiments

 Discussion

Outline



Preference-based Policy Learning Riad Akrour, Marc Schoenauer and Michèle Sebag 10

 A scoring function for guiding policy search 
(during self-training)

Policy Return Estimate 
WHAT, HOW

 Linear function                   learned by optimizing  
a standard convex problem [Joachims 05]:

 

 Standard learning to rank, using archived expert 
preferences
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 Search space: policy space (parametric space)
 But unlikely to learn good ranking functions on 

parametric space
 Inconsistent in presence of noise

 Use behavioral representation    

Policy Return Estimate
The search space
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 Trajectory → quantized (ε-means) Sensory-Motor States

      Policy: behavioral representation    as a histogram of sms

 Linear PRE implies setting rewards on SMS

as                                given

Behavioral representation
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 PRE defined over SMS of demonstrated policies
 Need to enforce exploration

 Exploration term: min of normalized distance w.r.t already 
demonstrated policies

 Given      the archive of already demonstrated policies

 Define  

Exploration/Exploitation
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 Selected policy        maximizes

 Gradient methods not applicable 
 Use Black-Box optimization algorithm

Self-training

     does the balance between           and 

 As Expert ranks          ,      is updated:   
 Increased if progress observed 
 Decreased otherwise
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Preference-based Policy Learning
PPL Algorithm
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 Background

 Preference-based Policy learning
 Learning the PRE

 Exploration/Exploitation dilemma

 Self-training

 Algorithm

 ExperimentsExperiments

 Discussion

Outline
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Experimental goal and setting

Setting: One and two robots

 8 IR sensors, 2 motor commands (rotation, translation)

                    weight of a 1-hidden-layer feed-forward neural net 

 Reproducibility

 Simulator Roborobo http://www.lri.fr/~bredeche
 Expert preferences emulated using ground truth

 Results averaged over 41 independent runs 

Baselines
 Parametric PPL: Learn PRE over parametric space 

 Expert only: Black-Box optimization using emulated preferences

 Novelty Search [Lehman & Stanley 08]: Exploration only
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The maze problem

 Reaches the goal in average at the 39th trajectory shown to expert 

 PPL performs +53% better than Expert only (¼ evaluations needed)

 PPL-parametric performs the same as Expert only

 Novelty search fails (large search space) 

 Goal: Shortest path to the green zone
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Synchronized exploration

 Goal: Two robots, must stay close while exploring arena

 More difficult problem

 Same conclusions: PPL >> Expert only > Novelty

 PPL performs even better (+354% from Expert Only)
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 Background

 Preference-based Policy learning
 Learning the PRE

 Exploration/Exploitation dilemma

 Self-training

 Algorithm

 Experiments

 DiscussionDiscussion

Outline
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 Pros
✔ Applicable with “informed outsider” experts 
✔ Applicable in partially observable settings
✔ Affordable w.r.t. human effort

 Cons w.r.t. embedded robotics

✗ Self-training phase is time/energy consuming

Preference Policy Learning
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 Expert may prefer a trajectory because of sub-behavior
 Cast learning as a Multiple Instance Problem

 Add hierarchy in the clustering algorithm when building   , 
and link it to Exploitation/Exploration dilemma

 Fine grain details for exploitation

 Less granularity for exploration

 Improve self-training phase
 See     as a reward and combine policy improvement with black 

box optimization 

Future work
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