Fast Projections onto $\ell_{1,q}$ -norm Balls (for grouped feature selection)

SUVRIT SRA Max Planck Institute for Intelligent Systems, Tübingen

 $\ell(x) + \lambda R(x) \ \ell(x) + \lambda R(x)$

 $\frac{\text{ECML 2011, Athens, Greece.}}{\chi} - \chi R(\chi)$

Introduction

Regularized Optimization

$$\ell(\mathbf{x}) + \lambda \mathbf{r}(\mathbf{x})$$

 $\ell(\mathbf{x})$ s.t. $\mathbf{r}(\mathbf{x}) \leq \gamma$

Introduction

Regularized Optimization

$$\ell(x) + \lambda r(x)$$

 $\ell(x)$ s.t. $r(x) \leq \gamma$

Introduction - Background

Minimize

$$\ell(x) + \lambda r(x)$$

or
 $\ell(x)$ s.t. $r(x) \le \gamma$

Introduction - Background

Minimize

 $\ell(x) + \lambda r(x)$ or $\ell(x)$ s.t. $r(x) \le \gamma$

change composite compressed cooccurence detection feature frequency graphical **group** higher image ising joint **lassolearning** logistic loss machine **mixed** mixed-norms model **models multitask** nonsmooth norms order point potentials processing regression regularizer restoration **selection** sensing **sparsity** statistics structured total variation

Introduction - Problem

Nonconvex, Differentiable Non-differentiable

Main iteration

$$\mathbf{x}^{t+1} = \Pi(\mathbf{x}^t - \alpha^t \nabla \ell(\mathbf{x}^t))$$

Main iteration

$$\mathbf{x}^{t+1} = \Pi(\mathbf{x}^t - \alpha^t \nabla \ell(\mathbf{x}^t))$$

 α^t : Barzilai-Borwein spectral step-size

Main iteration

$$\mathbf{x}^{t+1} = \Pi(\mathbf{x}^t - \alpha^t \nabla \ell(\mathbf{x}^t))$$

 α^t : Barzilai-Borwein spectral step-size

 $\Pi(\mathbf{y}) := \operatorname{argmin} \|\mathbf{x} - \mathbf{y}\|_2 \quad \text{s.t.} \quad \mathbf{r}(\mathbf{x}) \le \gamma$

Step-size is closed form

Main work: projection

Mixed norms

Restrict to:
$$r(x) := \|x\|_{1,q}$$

Parameter (sub)vectors x_1, \dots, x_T $\|X\|_{1,q} := \sum_i \|X_i\|_q$

Mixed norms

Restrict to:
$$r(x) := \|x\|_{1,q}$$

Parameter (sub)vectors x_1, \dots, x_T $\|X\|_{1,q} := \sum_i \|X_i\|_q$

- Enforce joint sparsity / feature selection
- **q** = 1: ordinary ℓ_1 ; q = 2: group lasso;
- $q = \infty$: most severe—tends to eliminate entire feature
- multitask lasso; block compressed sensing; etc.

We need to solve

$$\min \frac{1}{2} \|x - y\|_2^2$$
 s.t. $\|x\|_{1,q} \le \gamma$

We need to solve

$$\min \frac{1}{2} \|x - y\|_2^2$$
 s.t. $\|x\|_{1,q} \le \gamma$

Lagrangian duality

There is a θ^* for which we can instead solve $\min \frac{1}{2} \|x - y\|_2^2 + \theta^*(\|x\|_{1,q} - \gamma)$

This is easier!

$$\|x\|_{1,q} = \sum_i \|x_i\|_q$$
; so problem *separable*

Separable ℓ_q -norm *proximity operations* $\min \frac{1}{2} \|x - y\|_2^2 + \theta^* \|x\|_q$

q = 1: soft-thresholding (closed-form) q = 2: soft-thresholding (closed-form) $q = \infty$: requires reformulation

What about θ^* ?

What about θ^* ?

Root finding

Let $g(\theta) := -\gamma + ||u(\theta)||_{1,q}$ $u(\theta)$ via proximity operator

Theorem: $\theta^* \in [0, \theta_{max}]$

 θ_{max} via *dual-norm*

Root finding: bisection, inv. quadratic, secant

Solution to ϵ -accuracy in $O(\log(\theta_{\max}/\epsilon))$

Numerical results

$\ell_{1,\infty}$ projections

$\min \|X - Y\|_{\mathsf{F}}^2 \quad \text{s.t.} \ \|X\|_{1,\infty} \leq \gamma$

Projection methods

Quattoni et al., ICML 2009 - QP

Our method, ECML 2011 - FP

Numerical results

$\begin{array}{c|c} \ell_{1,\infty} \text{ projections} \\ \hline c\gamma & \mathsf{QP} & \mathsf{FP} \\ \hline .50 & 1982s & 31s \\ \end{array}$

Numerical results

$\ell_{1,\infty}$ projections

$oldsymbol{\mathcal{C}}\gamma$	QP	FP
.50	1982s	31s
.20	11491s	25s
.10	17064s	23s
.05	20165s	24s

Multitask Lasso

- Let X_i be data matrix for task j
- Seek parameter matrix W
- Columns corr. to tasks, rows to features
- Regularize shared features across tasks

$\sum_{t} \|y_t - X_t w_t\|_2^2$ s.t. $\|W\|_{1,\infty} \le \gamma$

Synthetic Results

Small to medium scale data

Size	# projs	SPG-QP	SPG-FP
27G	16	1054s	320s

Synthetic Results

Small to medium scale data

Size	# projs	SPG-QP	SPG-FP
27G	16	1054s	320s
0.8G	29	2474s	84s

Synthetic Results

Small to medium scale data

Size	# projs	SPG-QP	SPG-FP
27G	16	1054s	320s
0.8G	29	2474s	84s
8M	171	826s	31s

MTL on news data

Subset of CMU News

Five simultaneous feature selection tasks

■ 54K features, 5 sets of 3K documents

MTL on news data

Density	SPG-QP	SPG-FP
.01	6800s	507s
.10	9759s	650s
.20	4746s	554s

SPG-QP spends 96% time in projections

SPG-FP spends 20% time in projections

Summary

- Efficient projections onto $\ell_{1,q}$ -norm balls
- Application to mixed-norm regression
- Strong empirical results
- Several open issues remain

Summary

- Efficient projections onto $\ell_{1,q}$ -norm balls
- Application to mixed-norm regression
- Strong empirical results
- Several open issues remain

Summary

- Efficient projections onto l_{1,q}-norm balls
- Application to mixed-norm regression
- Strong empirical results
- Several open issues remain

감사합니다 Natick Danke Ευχαριστίες Dalu Danke Ευχαριστίες Dalu Thank You Cnacμ60 Dank Gracias 御谢 Merci ありがとう