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The Model

The Framework: Reinforcement Learning

Agent Envir.

Reward Xt

Action At

State St

Exploration
p

Exploitation

6= statistical learning (maximizing the reward is the main goal)
6= game theory (the environment is stochastic)



The Model

The (stochastic) Bernoulli Multi-Armed Bandit Model

Environment K arms with parameters θ = (θ1, . . . , θK) such that
for any possible choice of arm at ∈ {1, . . . ,K} at
time t, one receives the reward

Xt = Xat,t

where, for any 1 ≤ a ≤ K and s ≥ 1, Xa,s ∼ Pθa ,
and the (Xa,s)a,s are independent.

Reward disbtributions can form a parametric family, or not. In this
talk, we consider either general bounded rewards, or
a canonical exponential family

Example Bernoulli rewards: θ ∈ [0, 1]K , Xa,s ∼ B(θa)
Strategy The agent’s actions follow a dynamical strategy

π = (π1, π2, . . . ) such that

At = πt(X1, . . . , Xt−1)



The Model

Performance Evaluation, Regret

Cumulated Reward Sn =
∑n

t=1Xt

Our goal Choose π so as to maximize

E [Sn] =

n∑
t=1

K∑
a=1

E
[
E [Xt1{At = a}|X1, . . . , Xt−1]

]
=

K∑
a=1

µaE [Nπ
n (a)]

where Nπ
t (a) =

∑
s≤t 1{As = a} is the number of

draws of arm a up to time n, and µa = E [Pθa ].

Regret Minimization equivalent to minimizing

Rn(θ) = nµ∗ − E [Sn] =
∑

a:µa<µ∗

(µ∗ − µa)E [Nπ
n (a)]

where µ∗ ∈ max{µa : 1 ≤ a ≤ K}
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Lower Bound for the Regret

Asymptotically Optimal Strategies

A strategy π is said to be consistent if, for any θ ∈ [0, 1]K ,

1

n
E[Sn]→ θ∗

The strategy is efficient if for all θ ∈ [0, 1]K and all α > 0,

Rn(θ) = o(nα)

There are efficient strategies and we consider the best
achievable asymptotic performance among efficient strategies



Lower Bound for the Regret

The Bound of Lai & Robbins

Theorem [Lai&Robbins, ’85]

If π is an efficient strategy, then , for any θ ∈ [0, 1]K ,

lim inf
n→∞

Rn(θ)

log(n)
≥

∑
a:µa<µ∗

µ∗ − µa
KL(θa, θ∗)

where KL(θ, θ′) denotes the Kullback-Leibler divergence between
the distributions Pθ and Pθ′ .

For example, in the Bernoulli case:

kl(p, q) = p log
p

q
+ (1− p) log 1− p

1− q

The bound was generalized by Burnetas and Katehakis (1996)
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Optimistic Algorithms

Optimism in the Face of Uncertainty

Optimism in an heuristic principle popularized by [Lai&Robins ’85;
Agrawal ’95] which consists in letting the agent

play as if the environment was the most favorable
among all environments that are sufficiently likely
given the observations accumulated so far

Surprisingly, this simple heuristic principle can be instantiated into
algorithms that are robust, efficient and easy to implement in
many scenarios pertaining to reinforcement learning



Optimistic Algorithms

Upper Confidence Bound Strategies

UCB [Lai&Robins ’85; Auer&al ’02]

Construct an upper confidence bound for the expected reward
of each arm:

St(a)

Nt(a)︸ ︷︷ ︸
estimated reward

+

√
log(t)

2Nt(a)︸ ︷︷ ︸
exploration bonus

Choose the arm with the highest UCB

It is and index strategy [Gittins ’79]

Its behavior is easily interpretable and intuitively appealing



Optimistic Algorithms

UCB in Action



Optimistic Algorithms

UCB in Action



Optimistic Algorithms

Performance of UCB

For rewards in [0, 1], the regret of UCB is upper-bounded as

E[Rn] = O(log(n))

(finite-time regret bound) and

lim sup
n→∞

E[Rn]
log(n)

≤
∑

a:µa<µ∗

1

2(µ∗ − µa)

Yet, in the case of Bernoulli variables, the rhs. is greater than
suggested by the bound by Lai & Robbins

Many variants have been suggested to incorporate an estimate of
the variance in the exploration bonus (e.g., [Audibert&al ’07])
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An Optimistic Algorithm based on Kullback-Leibler Divergence

KL-UCB

Require: n (horizon), K (number of arms), REWARD (reward
function, bounded in [0, 1])

1: for t = 1 to K do
2: N [t]← 1
3: S[t]← REWARD(arm = t)
4: end for
5: for t = K + 1 to n do
6:

a← argmax
1≤a≤K

max
q

{
q ∈

[
S[a]

N [a]
, 1

]
: kl

(
S[a]

N [a]
, q

)
≤ log(t)

N [a]

}
7: r ← REWARD(arm = a)
8: N [a]← N [a] + 1
9: S[a]← S[a] + r

10: end for



An Optimistic Algorithm based on Kullback-Leibler Divergence

The KL Upper Confidence Bound in Picture

If Z1, . . . , Zs
iid∼ B(θ0), x < θ0

and if p̂s = (Z1 + · · · + Zs)/s,
then

Pθ0 (p̂s ≤ x) ≤ exp (−s kl(x, θ0))
0

kl(⋅,θ)

θ
0

x

−log(α)/s

In other words, if α = exp (−s kl(x, θ0)):

Pθ0 (p̂s ≤ x) = Pθ0
(
kl(p̂s, θ0) ≤ −

log(α)

s
, p̂s < θ

)
≤ α

=⇒ upper confidence bound for p at risk α :

us = sup
{
θ > p̂s : kl(p̂s, θ) ≤ −

log(α)

s

}



An Optimistic Algorithm based on Kullback-Leibler Divergence

The KL Upper Confidence Bound in Picture

If Z1, . . . , Zs
iid∼ B(θ0), x < θ0

and if p̂s = (Z1 + · · · + Zs)/s,
then

Pθ0 (p̂s ≤ x) ≤ exp (−s kl(x, θ0))
0

kl(⋅,θ)

p
s

kl(p
s
,⋅)

u
s

−log(α)/s

In other words, if α = exp (−s kl(x, θ0)):

Pθ0 (p̂s ≤ x) = Pθ0
(
kl(p̂s, θ0) ≤ −

log(α)

s
, p̂s < θ

)
≤ α

=⇒ upper confidence bound for p at risk α :

us = sup
{
θ > p̂s : kl(p̂s, θ) ≤ −

log(α)

s

}



An Optimistic Algorithm based on Kullback-Leibler Divergence

Why focus on Bernoulli variables?

−→ because they maximize deviations
among bounded variables with given
expectation:

Lemma

Let X denote a random variable such that 0 ≤ X ≤ 1 and denote
by µ = E[X] its mean. Then, for any λ ∈ R,

E [exp(λX)] ≤ 1− µ+ µ exp(λ) .

This fact is well-known for the variance, but also true for all
exponential moments and thus for Cramer-type deviation bounds



An Optimistic Algorithm based on Kullback-Leibler Divergence

Regret Bound for KL-UCB

Theorem

For all ε > 0, there exist C1, C2(ε) and β(ε) such that

E[NKL-UCB
n (a)] ≤ log(n)

kl(µa, µ∗)
(1 + ε) + C1 log(log(n)) +

C2(ε)

nβ(ε)

Corollary

lim sup
n→∞

Rn(θ)

log(n)
≤

∑
a:µa<µ∗

µ∗ − µa
kl(µa, µ∗)

KL-UCB satisfies an improved logarithmic finite-time regret bound
Besides, it is asymptotically optimal in the Bernoulli case



An Optimistic Algorithm based on Kullback-Leibler Divergence

Comparison to UCB
KL-UCB addresses exactly the same problem as UCB, with the
same generality, but it has always a smaller regret as can be seen
from Pinsker’s inequality

kl(µ1, µ2) ≥ 2(µ1 − µ2)2
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An Optimistic Algorithm based on Kullback-Leibler Divergence

Main Tool: Deviation Inequality for Self-Normalized Sums
Theorem Let (Xt)t ≥ 1 be a sequence of independent random
variables bounded in [0, 1] and let (Ft)t>1 a collection of increasing
sigma-fields such that ∀t, σ(X1 . . . , Xt) ⊂ Ft and, for s > t, Xs is
independent of Ft. Further assume that (εt)t≥1 is a
(Ft)-predictable sequence of Bernoulli random variables. Define,
for δ > 0 ,

S(n) =

n∑
s=1

εsXs , N(n) =

n∑
s=1

εs , θ̂(n) =
S(n)

N(n)
,

u(n) = max
q

{
q > θ̂n : N(n) kl

(
θ̂(n), q

)
≤ δ
}
.

Then

P (u(n) < θ) ≤ e dδ log(n)e exp(−δ)
P
(
N(n) kl(θ̂(n), θ) > δ

)
≤ 2e dδ log(n)e exp(−δ)



An Optimistic Algorithm based on Kullback-Leibler Divergence

Results: Two-Arm Scenario
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Figure: Performance of various algorithms when θ = (0.9, 0.8). Left:
average number of draws of the sub-optimal arm as a function of time.
Right: box-and-whiskers plot for the number of draws of the sub-optimal
arm at time n = 5, 000. Results based on 50, 000 independent
replications



An Optimistic Algorithm based on Kullback-Leibler Divergence

Results: Ten-Arm Scenario with Low Rewards
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Figure: Average regret as a function of time when
θ = (0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01). Red line: Lai
& Robbins lower bound; thick line: average regret; shaded regions:
central 99% region an upper 99.95% quantile



An Optimistic Algorithm based on Kullback-Leibler Divergence

Results: Truncated Exponentials
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Figure: Average regret as a function of time for 5 exponentially
distributed arms (parameters: 1/5, 1/4, 1/3, 1/2, 1) truncated at
Xmax = 10.
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Beyond Bounded Rewards

Exponential Family Rewards

The method can be directly adapted for reward distributions
that belongs to a canonical exponential family, i.e. such that
the pdf of the rewards is given by

pθa(x) = exp
(
xθa − b(θa) + c(x)

)
, 1 ≤ a ≤ K

for a parameter θ ∈ RK

The algorithm is the same: only use KL instead of kl.

For instance, for exponential rewards pθa(x) = θae
−θax:

KL(u, v) = u− v + u log
u

v

Incorporating this change, one obtains analog deviation and
regret bounds (with an identical proof)



Beyond Bounded Rewards

Results: Exponential Rewards
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Figure: Average regret as a function of time for 5 exponentially
distributed arms. Solid bold curve: mean regret; dark and light shaded
regions: central 20% region and upper 1% quantile, respectively
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Conclusion

1 Use KL-UCB rather than UCB-1 or UCB-2

2 Can the method be adapted to other families of reward
distributions? Listen to the next talk!

3 Can the KL-based deviation bounds be useful in other
settings?

Used for model-based RL by Filippi et al.,
Optimism in Reinforcement Learning and
Kullback-Leibler Divergence, Allerton
Conference, 2010

Thank you for your attention!
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