Employing Publicly Available Biological Expert Knowledge from Protein-Protein Interaction Information

author: Kristine A. Pattin, Dartmouth Medical School
published: Oct. 14, 2010,   recorded: September 2010,   views: 2987


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Genome wide association studies (GWAS) are now allowing researchers to probe the depths of common complex human diseases, yet few have identified single sequence variants that confer disease susceptibility. As hypothesized, this is due the fact that multiple interacting factors influence clinical endpoint. Given the number of single nucleotide polymorphisms (SNPs) combinations grows exponentially with the number of SNPs being analyzed, computational methods designed to detect these interactions in smaller datasets are thus not applicable. Providing statistical expert knowledge has exhibited an improvement in their performance, and we believe biological expert knowledge to be as capable. Since one of the strongest demonstrations of the functional relationship between genes is protein-protein interactions, we present a method that exploits this information in genetic analyses. This study provides a step towards utilizing expert knowledge derived from public biological sources to assist computational intelligence algorithms in the search for epistasis.

See Also:

Download slides icon Download slides: prib2010_pattin_epab_01.pdf (1.2┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: