Approximations with Reweighted Generalized Belief Propagation

author: Wim Wiegerinck, Department of Medical Physics and Biophysics, Radboud University Nijmegen
published: Feb. 25, 2007,   recorded: January 2005,   views: 3521


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In (Wainwright et al., 2002) a new general class of upper bounds on the log partition function of arbitrary undirected graphical models has been developed. This bound is constructed by taking convex combinations of tractable distributions. The experimental results published so far concentrates on combinations of tree-structured distributions leading to a convexified Bethe free energy, which is minimized by the tree-reweighted belief propagation algorithm. One of the favorable properties of this class of approximations is that increasing the complexity of the approximation is guaranteed to increase the precision. The lack of this guarantee is notorious in standard generalized belief propagation. We increase the complexity of the approximating distributions by taking combinations of junction trees, leading to a convexified Kikuchi free energy, which is minimized by reweighted generalized belief propagation. Experimental results for Ising grids as well as for fully connected Ising models are presented illustrating advantages and disadvantages of the reweighting method in approximate inference.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: