Matching Workers Expertise with Tasks: Incentives in Heterogeneous

author: Afshin Nikzad, Management Science and Engineering Department, Stanford University
published: Oct. 6, 2014,   recorded: December 2013,   views: 1983

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Designing optimal pricing policies and mechanisms for allocating tasks to workers is central to the online crowdsourcing markets. In this paper, we consider the following realistic setting of online crowdsourcing markets - we are given a heterogeneous set of tasks requiring certain skills; each worker has certain expertise and interests which define the set of tasks she is interested in and willing to do. Given this bipartite graph between workers and tasks, we design our mechanism TM-UNIFORM which does the allocation of tasks to workers, while ensuring budget feasibility, incentive-compatibility and achieves near-optimal utility. We further extend our results by exploiting a link with online Adwords allocation problem and present a randomized mechanism TM-RANDOMIZED with improved approximation guarantees. Apart from strong theoretical guarantees, we carry out extensive experimentation using simulations on a realistic case study ofWikipedia translation project using Mechanical Turk. Our results demonstrate the practical applicability of our mechanisms for realistic crowdsourcing markets on the web. We note that this is the first paper that addresses this setting of matching tasks to workers from a mechanism design perspective. Previous work either made a simplifying assumption that tasks are homogeneous or didn’t consider the matching constraints given by the bipartite graph.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: