View order

Type of content







...Search a Keyword

event header image

New Directions in Multiple Kernel Learning

Research on Multiple Kernel Learning (MKL) has matured to the point where efficient systems can be applied out of the box to various application domains. In contrast to last year’s workshop, which evaluated the achievements of MKL in the past decade, this workshop looks beyond the standard setting and investigates new directions for MKL. In particular, we focus on two topics:

  1. There are three research areas, which are closely related, but have traditionally been treated separately: learning the kernel, learning distance metrics, and learning the covariance function of a Gaussian process. We therefore would like to bring together researchers from these areas to find a unifying view, explore connections, and exchange ideas.
  2. We ask for novel contributions that take new directions, propose innovative approaches, and take unconventional views. This includes research, which goes beyond the limited classical sumof- kernels setup, finds new ways of combining kernels, or applies MKL in more complex settings.

Taking advantage of the broad variety of research topics at NIPS, the workshop aims to foster collaboration across the borders of the traditional multiple kernel learning community.

Workshop homepage:


Invited Speakers


Poster Spotlights

Panel discussion

[syn]  3543 views, 25:11   Panel Discussion
flagPanel discussionPanel discussion
Guillaume Obozinski, Raquel Urtasun, et al. Guillaume Obozinski, Raquel Urtasun, Massimiliano Pontil, Kilian Q. Weinberger

Write your own review or comment:

make sure you have javascript enabled or clear this field: