Classification with Deep Invariant Scattering Networks

author: Stéphane Mallat, Applied Mathematics - CMAP, École Polytechnique
published: Jan. 16, 2013,   recorded: December 2012,   views: 16348


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


High-dimensional data representation is in a confused infancy compared to statistical decision theory. How to optimize kernels or so called feature vectors? Should they increase or reduce dimensionality? Surprisingly, deep neural networks have managed to build kernels accumulating experimental successes. This lecture shows that invariance emerges as a central concept to understand high-dimensional representations, and deep network mysteries.

Intra-class variability is the curse of most high-dimensional signal classifications. Fighting it means finding informative invariants. Standard mathematical invariants are either non-stable for signal classification or not sufficiently discriminative. We explain how convolution networks compute stable informative invariants over any group such as translations, rotations or frequency transpositions, by scattering data in high dimensional spaces, with wavelet filters. Beyond groups, invariants over manifolds can also be learned with unsupervised strategies that involve sparsity constraints. Applications will be discussed and shown on images and sounds.

See Also:

Download slides icon Download slides: nips2012_mallat_classification_01.pdf (10.8 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: