Spectral learning of linear dynamics from generalisedlinear observations with application to neural population data

author: Lars Buesing, Gatsby Computational Neuroscience Unit, University College London
published: Jan. 16, 2013,   recorded: December 2012,   views: 3121


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Latent linear dynamical systems with generalised-linear observation models arise in a variety of applications, for example when modelling the spiking activity of populations of neurons. Here, we show how spectral learning methods for linear systems with Gaussian observations (usually called subspace identification in this context) can be extended to estimate the parameters of dynamical system models observed through non-Gaussian noise models. We use this approach to obtain estimates of parameters for a dynamical model of neural population data, where the observed spike-counts are Poisson-distributed with logrates determined by the latent dynamical process, possibly driven by external inputs. We show that the extended system identification algorithm is consistent and accurately recovers the correct parameters on large simulated data sets with much smaller computational cost than approximate expectation-maximisation (EM) due to the non-iterative nature of subspace identification. Even on smaller data sets, it provides an effective initialization for EM, leading to more robust performance and faster convergence. These benefits are shown to extend to real neural data.

See Also:

Download slides icon Download slides: nips2012_buesing_spectral_learning_01.pdf (1.6┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: