A blind deconvolution method for neural spike identification

author: Chaitanya Ekanadham, Courant Institute of Mathematical Sciences, New York University (NYU)
published: Sept. 6, 2012,   recorded: December 2011,   views: 2985


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We consider the problem of estimating neural spikes from extracellular voltage recordings. Most current methods are based on clustering, which requires substantial human supervision and produces systematic errors by failing to properly handle temporally overlapping spikes. We formulate the problem as one of statistical inference, in which the recorded voltage is a noisy sum of the spike trains of each neuron convolved with its associated spike waveform. Joint maximum-a-posteriori (MAP) estimation of the waveforms and spikes is then a blind deconvolution problem in which the coefficients are sparse. We develop a block-coordinate descent method for approximating the MAP solution. We validate our method on data simulated according to the generative model, as well as on real data for which ground truth is available via simultaneous intracellular recordings. In both cases, our method substantially reduces the number of missed spikes and false positives when compared to a standard clustering algorithm, primarily by recovering temporally overlapping spikes. The method offers a fully automated alternative to clustering methods that is less susceptible to systematic errors.

See Also:

Download slides icon Download slides: nips2011_ekanadham_deconvolution_01.pdf (700.0 KB)

Download article icon Download article: nips2011_0831.pdf (2.9 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: