Deep Learning with Multiplicative Interactions

author: Geoffrey E. Hinton, Department of Computer Science, University of Toronto
published: Jan. 20, 2010,   recorded: December 2009,   views: 19481


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Deep networks can be learned efficiently from unlabeled data. The layers of representation are learned one at a time using a simple learning module that has only one layer of latent variables. The values of the latent variables of one module form the data for training the next module. The most commonly used modules are Restricted Boltzmann Machines or autoencoders with a sparsity penalty on the hidden activities. Although deep networks have been quite successful for tasks such as object recognition, information retrieval, and modeling motion capture data, the simple learning modules do not have multiplicative interactions which are very useful for some types of data. The talk will show how a third-order energy function can be factorized to yield a simple learning module that retains advantageous properties of a Restricted Boltzmann Machine such as very simple exact inference and a very simple learning rule based on pair-wise statistics. The new module contains multiplicative interactions that are useful for a variety of unsupervised learning tasks. Researchers at the University of Toronto have been using this type of module to extract oriented energy from image patches and dense flow fields from image sequences. The new module can also be used to allow the style of a motion to blend auto regressive models of motion capture data. Finally, the new module can be used to combine an eye-position with a feature-vector to allow a system that has a variable resolution retina to integrate information about shape over many fixations.

See Also:

Download slides icon Download slides: nips09_hinton_dlmi_01.ppt (6.9┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: