Naranjo Question Answering using End-to-End Multi-task Learning Model

author: Bhanu Pratap Singh Rawat, University of Massachusetts Amherst
published: March 2, 2020,   recorded: August 2019,   views: 11

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In the clinical domain, it is important to understand whether an adverse drug reaction (ADR) is caused by a particular medication. Clinical judgement studies help judge the causal relation between a medication and its ADRs. In this study, we present the first attempt to automatically infer the causality between a drug and an ADR from electronic health records (EHRs) by answering the Naranjo questionnaire, the validated clinical question answering set used by domain experts for ADR causality assessment. Using physicians’ annotation as the gold standard, our proposed joint model, which uses multi-task learning to predict the answers of a subset of the Naranjo questionnaire, significantly outperforms the baseline pipeline model with a good margin, achieving a macro-weighted f-score between 0.3652-0.5271 and micro-weighted f-score between 0.9523-0.9918.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: