DeepUrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big Events

author: Renhe Jiang, University of Tokyo
published: March 2, 2020,   recorded: August 2019,   views: 13

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Event crowd management has been a significant research topic with high social impact. When some big events happen such as an earthquake, typhoon, and national festival, crowd management becomes the first priority for governments (e.g. police) and public service operators (e.g. subway/bus operator) to protect people’s safety or maintain the operation of public infrastructures. However, under such event situations, human behavior will become very different from daily routines, which makes prediction of crowd dynamics at big events become highly challenging, especially at a citywide level. Therefore in this study, we aim to extract the deep trend only from the current momentary observations and generate an accurate prediction for the trend in the short future, which is considered to be an effective way to deal with the event situations. Motivated by these, we build an online system called DeepUrbanEvent which can iteratively take citywide crowd dynamics from the current one hour as input and report the prediction results for the next one hour as output. A novel deep learning architecture built with recurrent neural networks is designed to effectively model these highly-complex sequential data in an analogous manner to video prediction tasks. Experimental results demonstrate the superior performance of our proposed methodology to the existing approaches. Lastly, we apply our prototype system to multiple big real-world events and show that it is highly deployable as an online crowd management system.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: