Simultaneous Urban Region Function Discovery and Popularity Estimation Via an Infinite Urbanization Process Model

author: Bang Zhang, CSIRO Mathematics, Informatics and Statistics
published: Nov. 23, 2018,   recorded: August 2018,   views: 554

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Urbanization is a global trend that we have all witnessed in the past decades. It brings us both opportunities and challenges. On the one hand, urban system is one of the most sophisticated social-economic systems that is responsible for efficiently providing supplies meeting the demand of residents in various of domains, e.g., dwelling, education, entertainment, healthcare, etc. On the other hand, significant diversity and inequality exists in the development patterns of urban systems, which makes urban data analysis difficult. Different urban regions often exhibit diverse urbanization patterns and provide distinct urban functions, e.g., commercial and residential areas offer significantly different urban functions. It is desired to develop the data analytic capabilities for discovering the underlying cross-domain urbanization patterns, clustering urban regions based on their function similarity and predicting region popularity in specified domains. Previous studies in the urban data analysis area often just focus on individual domains and rarely consider cross-domain urban development patterns hidden in different urban regions. In this paper, we propose the infinite urbanization process (IUP) model for simultaneous urban region function discovery and region popularity prediction. The IUP model is a generative Bayesian nonparametric process that is capable of describing a potentially infinite number of urbanization patterns. It is developed within the supervised topic modeling framework and is supported by a novel hierarchical spatial distance dependent Bayesian nonparametric prior over the spatial region partition space. The empirical study conducted on the real-world datasets shows promising outcome compared with the state-of-the-art techniques.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: