Multiview Clustering via Adaptively Weighted Procrustes

author: Lai Tian, Northwestern Polytechnical University
published: Nov. 23, 2018,   recorded: August 2018,   views: 460

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In this paper, we make a multiview extension of the spectral rotation technique raised in single view spectral clustering research. Since spectral rotation is closely related to the Procrustes Analysis for points matching, we point out that classical Procrustes Average approach can be used for multiview clustering. Besides, we show that direct applying Procrustes Average (PA) in multiview tasks may not be optimal theoretically and empirically, since it does not take the clustering capacity differences of different views into consideration. Other than that, we propose an Adaptively Weighted Procrustes (AWP) approach to overcome the aforementioned deficiency. Our new AWP weights views with their clustering capacities and forms a weighted Procrustes Average problem accordingly. The optimization algorithm to solve the new model is computational complexity analyzed and convergence guaranteed. Experiments on five real-world datasets demonstrate the effectiveness and efficiency of the new models.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: