Risk Prediction on Electronic Healthcare Records with Prior Medical Knowledge

author: Fenglong Ma, Department of Computer Science and Engineering, University at Buffalo
published: Nov. 23, 2018,   recorded: August 2018,   views: 741

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Predicting the risk of potential diseases from Electronic Health Records (EHR) has attracted considerable attention in recent years, especially with the development of deep learning techniques. Compared with traditional machine learning models, deep learning based approaches achieve superior performance on risk prediction task. However, none of existing work explicitly takes prior medical knowledge (such as the relationships between diseases and corresponding risk factors) into account. In medical domain, knowledge is usually represented by discrete and arbitrary rules. Thus, how to integrate such medical rules into existing risk prediction models to improve the performance is a challenge. To tackle this challenge, we propose a novel and general framework called PRIME for risk prediction task, which can successfully incorporate discrete prior medical knowledge into all of the state-of-the-art predictive models using posterior regularization technique. Different from traditional posterior regularization, we do not need to manually set a bound for each piece of prior medical knowledge when modeling desired distribution of the target disease on patients. Moreover, the proposed PRIME can automatically learn the importance of different prior knowledge with a log-linear model.Experimental results on three real medical datasets demonstrate the effectiveness of the proposed framework for the task of risk prediction

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 text twist 2, February 15, 2020 at 8:46 a.m.:

In medical domain, knowledge is usually represented by discrete and arbitrary rules.

Write your own review or comment:

make sure you have javascript enabled or clear this field: