TruePIE: Discovering Reliable Patterns in Pattern‑Based Information Extraction

author: Qi Li, Department of Computer Science, University of Illinois at Urbana-Champaign
published: Nov. 23, 2018,   recorded: August 2018,   views: 446

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Pattern-based methods have been successful in information extraction and NLP research. Previous approaches learn the quality of a textual pattern as relatedness to a certain task based on statistics of its individual content (e.g., length, frequency) and hundreds of carefully-annotated labels. However, patterns of good content-quality may generate heavily conflicting information due to the big gap between relatedness and correctness. Evaluating the correctness of information is critical in (entity, attribute, value)-tuple extraction. In this work, we propose a novel method, called TruePIE, that finds reliable patterns which can extract not only related but also correct information. TruePIE adopts the self-training framework and repeats the training-predicting-extracting process to gradually discover more and more reliable patterns. To better represent the textual patterns, pattern embeddings are formulated so that patterns with similar semantic meanings are embedded closely to each other. The embeddings jointly consider the local pattern information and the distributional information of the extractions. To conquer the challenge of lacking supervision on patterns’ reliability, TruePIE can automatically generate high quality training patterns based on a couple of seed patterns by applying the arity-constraints to distinguish highly reliable patterns (i.e., positive patterns) and highly unreliable patterns (i.e., negative patterns). Experiments on a huge news dataset (over 25GB) demonstrate that the proposed TruePIE significantly outperforms baseline methods on each of the three tasks: reliable tuple extraction, reliable pattern extraction, and negative pattern extraction.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: