Collaborative Deep Metric Learning for Video Understanding

author: Joonseok Lee, Google, Inc.
published: Nov. 23, 2018,   recorded: August 2018,   views: 760

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The goal of video understanding is to develop algorithms that enable machines understand videos at the level of human experts. Researchers have tackled various domains including video classification, search, personalized recommendation, and more. However, there is a research gap in combining these domains in one unified learning framework. Towards that, we propose a deep network that embeds videos using their audio-visual content, onto a metric space which preserves video-to-video relationships. Then, we use the trained embedding network to tackle various domains including video classification and recommendation, showing significant improvements over state-of-the-art baselines. The proposed approach is highly scalable to deploy on large-scale video sharing platforms like YouTube.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: