Stable Prediction across Unknown Environments

author: Kun Kuang, Department of Computer Science and Technology, Tsinghua University
published: Nov. 23, 2018,   recorded: August 2018,   views: 732

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In many important machine learning applications, the training distribution used to learn a probabilistic classifier differs from the distribution on which the classifier will be used to make predictions. Traditional methods correct the distribution shift by reweighting training data with the ratio of the density between test and training data. However, in many applications training takes place without prior knowledge of the testing distribution. Recently, methods have been proposed to address the shift by learning the underlying causal structure, but those methods rely on diversity arising from multiple training data sets, and they further have complexity limitations in high dimensions. In this paper, we propose a novel Deep Global Balancing Regression (DGBR) algorithm to jointly optimize a deep auto-encoder model for feature selection and a global balancing model for stable prediction across unknown environments. The global balancing model constructs balancing weights that facilitate estimation of partial effects of features (holding fixed all other features), a problem that is challenging in high dimensions, and thus helps to identify stable, causal relationships between features and outcomes. The deep auto-encoder model is designed to reduce the dimensionality of the feature space, thus making global balancing easier. We show, both theoretically and with empirical experiments, that our algorithm can make stable predictions across unknown environments. Our experiments on both synthetic and real datasets demonstrate that our algorithm outperforms the state-of-the-art methods for stable prediction across unknown environments.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: