Disturbance Grassmann Kernels for Subspace Based Learning

author: Junyuan Hong, University of Science and Technology of China
published: Nov. 23, 2018,   recorded: August 2018,   views: 658

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In this paper, we focus on subspace-based learning problems, where data elements are linear subspaces instead of vectors. To handle this kind of data, Grassmann kernels were proposed to measure the space structure and used with classifiers, e.g., Support Vector Machines (SVMs). However, the existing discriminative algorithms mostly ignore the instability of subspaces, which would cause the classifiers to be misled by disturbed instances. Thus we propose considering all potential disturbances of subspaces in learning processes to obtain more robust classifiers. Firstly, we derive the dual optimization of linear classifiers with disturbances subject to a known distribution, resulting in a new kernel, Disturbance Grassmann (DG) kernel. Secondly, we research into two kinds of disturbance, relevant to the subspace matrix and singular values of bases, with which we extend the Projection kernel on Grassmann manifolds to two new kernels. Experiments on action data indicate that the proposed kernels perform better compared to state-of-the-art subspace-based methods, even in a worse environment.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: