Multi-Label Learning with Highly Incomplete Data via Collaborative Embedding

author: Yufei Han, Symantec Research Labs
published: Nov. 23, 2018,   recorded: August 2018,   views: 544

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Tremendous efforts have been dedicated to improving the effectiveness of multi-label learning with incomplete label assignments. Most of the current techniques assume that the input features of data instances are complete. Nevertheless, the co-occurrence of highly incomplete features and weak label assignments is a challenging and widely perceived issue in real-world multi-label learning applications due to a number of practical reasons including incomplete data collection, moderate labels from annotators, etc. Existing multi-label learning algorithms are not directly applicable when the observed features are highly incomplete. In this work, we attack this problem by proposing a weakly supervised multi-label learning approach, based on the idea of collaborative embedding. This approach provides a flexible framework to conduct efficient multi-label classification at both transductive and inductive mode by coupling the process of reconstructing missing features and weak label assignments in a joint optimisation framework. It is designed to collaboratively recover feature and label information, and extract the predictive association between the feature profile and the multi-label tag of the same data instance. Substantial experiments on public benchmark datasets and real security event data validate that our proposed method can provide distinctively more accurate transductive and inductive classification than other state-of-the-art algorithms.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: