Local Latent Space Models for Top-N Recommendation

author: Evangelia Christakopoulou, University of Minnesota
published: Nov. 23, 2018,   recorded: August 2018,   views: 371

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Users’ behaviors are driven by their preferences across various aspects of items they are potentially interested in purchasing, viewing, etc. Latent space approaches model these aspects in the form of latent factors. Although such approaches have been shown to lead to good results, the aspects that are important to different users can vary. In many domains, there may be a set of aspects for which all users care about and a set of aspects that are specific to different subsets of users. To explicitly capture this, we consider models in which there are some latent factors that capture the shared aspects and some user subset specific latent factors that capture the set of aspects that the different subsets of users care about.

In particular, we propose two latent space models: rGLSVD and sGLSVD, that combine such a global and user subset specific sets of latent factors. The rGLSVD model assigns the users into different subsets based on their rating patterns and then estimates a global and a set of user subset specific local models whose number of latent dimensions can vary.

The sGLSVD model estimates both global and user subset specific local models by keeping the number of latent dimensions the same among these models but optimizes the grouping of the users in order to achieve the best approximation. Our experiments on various real-world datasets show that the proposed approaches significantly outperform state-of-the-art latent space top-N recommendation approaches.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: